版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省西双版纳市数学八下期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知数据:1,2,0,2,﹣5,则下列结论错误的是()A.平均数为0 B.中位数为1 C.众数为2 D.方差为342.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是()A.(﹣1,) B.(﹣,1) C.(,﹣1) D.(1,﹣)3.一直角三角形两边分别为5和12,则第三边为()A.13 B. C.13或 D.74.当分式的值为0时,x的值为()A.0 B.3 C.﹣3 D.±35.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16- B.-12+ C.8- D.4-6.下列式子中,可以表示为的是()A. B. C. D.7.如图,在中,,,,点为斜边上一动点,过点作于,于点,连结,则线段的最小值为()A. B. C. D.8.下列图形既是中心对称图形,又是轴对称图形的是()A. B. C. D.9.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A. B. C. D.10.我市城区测得上一周PM2.5的日均值(单位mg/m3)如下:50,40,75,50,57,40,50.则这组数据的众数是()A.40 B.50 C.57 D.75二、填空题(每小题3分,共24分)11.评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试80分,作业95分,课堂参与82分,则他的数学期末成绩为_____.12.在菱形中,,若菱形的面积是,则=____________13.一只不透明的袋子中装有4个小球,分别标有数字2,3,4,,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和.记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数1020306090120180240330450“和为7”出现的频数19142426375882109150“和为7”出现的频率0.100.450.470.400.290.310.320.340.330.33试估计出现“和为7”的概率为________.14.如图,是同一双曲线上的三点过这三点分别作轴的垂线,垂足分别为,连结得到的面积分别为.那么的大小关系为____.15.数据15、19、15、18、21的中位数为_____.16.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是__________.17.如图,的对角线,相交于点,且,,,则的面积为______.18.已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.三、解答题(共66分)19.(10分)在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)上表中的a=;(2)“摸到白球”的概率的估计值是(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少个?20.(6分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.21.(6分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.22.(8分)如图所示,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上,判断△ABC和△DEF是否相似,并说明理由.23.(8分)(1);(2)÷24.(8分)如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F.(1)求证:AF=BE;(2)求点E到BC边的距离.25.(10分)在课外活动中,我们要研究一种四边形--筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.26.(10分)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
根据平均数、方差的计算公式和中位数、众数的定义分别进行解答,即可得出答案.【题目详解】A.这组数据:1,2,0,2,﹣5的平均数是:(1+2+0+2-5)÷5=0,故本选项正确;B.把这组数按从小到大的顺序排列如下:-5,0,1,2,2,可观察1处在中间位置,所以中位数为1,故本选项正确;C.观察可知这组数中出现最多的数为2,所以众数为2,故本选项正确;D.s2=所以选D【题目点拨】本题考查众数,算术平均数,中位数,方差;熟练掌握平均数、方差的计算公式和中位数、众数的定义是解决本题的关键.由于它们的计算由易到难为众数、中位数、算术平方根、方差,所以考试时可按照这样的顺序对选项进行判断,例如本题前三个选项正确,直接可以选D,就可以不用计算方差了.2、B【解题分析】
过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.【题目详解】如图,过点A′作A′C⊥x轴于C,∵B(2,0),∴等边△AOB的边长为2,又∵∠A′OC=90−60=30,∴OC=2×cos30=2×=,A′C=2×=1,∵点A′在第二象限,∴点A′(﹣,1).故选:B.【题目点拨】本题考查了坐标与图形变化−旋转,等边三角形的性质,根据旋转的性质求出∠A′OC=30,然后解直角三角形求出点A′的横坐标与纵坐标的长度是解题的关键.3、C【解题分析】
此题要考虑两种情况:当所求的边是斜边时;当所求的边是直角边时.【题目详解】由题意得:当所求的边是斜边时,则有=1;当所求的边是直角边时,则有=.故选:C.【题目点拨】本题考查了勾股定理的运用,难度不大,但要注意此类题的两种情况,很多学生只选1.4、B【解题分析】分式的值为0,则分子为0,分母不为0,列方程组即可求解.解:根据题意得,,解得,x=3;故选B.5、B【解题分析】
根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【题目详解】∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为cm,cm,∴AB=4cm,BC=cm,∴空白部分的面积=×4−12−16=+16−12−16=cm2.故选B.【题目点拨】此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长.6、A【解题分析】
直接利用同底数幂的乘法运算法则计算得出答案.【题目详解】A、a2÷a5=a-3,符合题意;B、a5÷a2=a3,不符合题意;C、a-1×a3=a2,不符合题意;D、(-a)(-a)(-a)=-a3,不符合题意;故选:A.【题目点拨】此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.7、C【解题分析】
连接PC,先证明四边形ECFP是矩形,从而得EF=PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【题目详解】连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=1,BC=6,∴AB=10,∴PC的最小值为:=4.1.∴线段EF长的最小值为4.1.故选C.【题目点拨】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.8、D【解题分析】
根据中心对称图形与轴对称图形的定义依次分析各选项即可判断.【题目详解】A只是轴对称图形,B只是中心对称图形,C只是轴对称图形,D既是中心对称图形,又是轴对称图形,故选D.【题目点拨】本题考查中心对称图形与轴对称图形的定义,解题的关键是知道轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、A【解题分析】
先根据矩形的判定得出四边形是矩形,再根据矩形的性质得出,互相平分且相等,再根据垂线段最短可以得出当时,的值最小,即的值最小,根据面积关系建立等式求解即可.【题目详解】解:∵,,,∴,∵,,∴四边形是矩形,∴,互相平分,且,又∵为与的交点,∴当的值时,的值就最小,而当时,有最小值,即此时有最小值,∵,∴,∵,,,∴,∴,∴.故选:.【题目点拨】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,找出取最小值时图形的特点是解题关键.10、B【解题分析】
根据众数的定义求解即可.【题目详解】在50,40,75,50,57,40,50.这组数据中,50出现三次,次数最多,故众数是50.故选B.【题目点拨】此题考查一组数据的众数的确定方法,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.二、填空题(每小题3分,共24分)11、:84分【解题分析】
因为数学期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.【题目详解】解:小明的数学期末成绩为=84(分),故答案为84分.【题目点拨】本题主要考查了加权平均数的概念.平均数等于所有数据的和除以数据的个数.12、【解题分析】
由菱形的性质得AO=CO=6cm,BO=DO,AC⊥BD,由菱形的面积可求BD的长,由勾股定理可求AB的长.【题目详解】解:如图,∵四边形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD∵S菱形ABCD=×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB==10cm故答案为10cm【题目点拨】本题考查了菱形的性质,掌握菱形的面积公式是解决本题的关键.13、0.33【解题分析】
由于大量试验中“和为7”出现的频数稳定在0.3附近,据图表,可估计“和为7”出现的概率为3.1,3.2,3.3等均可.【题目详解】出现和为7的概率是:0.33(或0.31,0.32,0.34均正确);故答案为:0.33【题目点拨】此题考查利用频率估计概率,解题关键在于看懂图中数据14、S1=S2=S1【解题分析】
根据反比例函数k的几何意义进行判断.【题目详解】解:设P1、P2、P1三点都在反比例函数y=上,则S1=|k|,S2=|k|,S1=|k|,所以S1=S2=S1.故答案为S1=S2=S1.【题目点拨】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15、1【解题分析】
将这五个数排序后,可知第3位的数是1,因此中位数是1.【题目详解】将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,故答案为:1.【题目点拨】考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.16、k>﹣1且k≠1.【解题分析】
由关于x的一元二次方程kx2-2x-1=1有两个不相等的实数根,即可得判别式△>1且k≠1,则可求得k的取值范围.【题目详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=1有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>1,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=1∴k≠1,∴k的取值范围是:k>﹣1且k≠1.故答案为:k>﹣1且k≠1.【题目点拨】此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>1⇔方程有两个不相等的实数根;(2)△=1⇔方程有两个相等的实数根;(3)△<1⇔方程没有实数根.17、1【解题分析】
已知四边形ABCD是平行四边形,根据平行四边形的性质可得OA=AC=5,OB=BD=13,再利用勾股定理的逆定理判定∠BAC=90°,由平行四边形的面积公式求解即可.【题目详解】∵四边形ABCD是平行四边形,∴OA=AC=5,OB=BD=13,∵AB=12,∴OA2+OB2=AB2,∴AC⊥AB,∴∠BAC=90°,∴▱ABCD的面积=AB•AC=12×10=1;故答案为:1.【题目点拨】本题考查了平行四边形的性质及勾股定理的逆定理,正确判定∠BAC=90°是解决问题的关键.18、【解题分析】
直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【题目详解】如图所示:关于x的不等式kx+b>0的解集是:x<1.故答案为:x<1.【题目点拨】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.三、解答题(共66分)19、(1)0.58;(2)0.6;(3)白球12(个),黑球8(个)【解题分析】
(1)利用频率=频数÷样本容量直接求解即可;(2)根据统计数据,当n很大时,摸到白球的频率接近0.60;(3)根据利用频率估计概率,可估计摸到白球的概率为0.60,然后利用概率公式计算白球的个数.【题目详解】(1)a==0.58,故答案为:0.58;(2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,故答案为:0.60;(3)由(2)摸到白球的概率估计值为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20−12=8(个).答:黑球8个,白球12个.【题目点拨】本题考查利用频率估计概率,事件A发生的频率等于事件A出现的次数除以实验总次数;在实验次数非常大时,事件A发生的频率约等于事件发生的概率,本题可据此作答;对于(3)可直接用概率公式.20、(1)详见解析;(2)1【解题分析】
(1)证出∠BAD=∠BCD,得出四边形ABCD是平行四边形,得出OA=OC,OB=OD,证出AC=BD,即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【题目详解】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:作OF⊥BC于F,如图所示.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【题目点拨】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.21、(1)见解析;(2)见解析;【解题分析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【题目详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.22、△ABC和△DEF相似,理由详见解析【解题分析】
首先根据小正方形的边长,求出△ABC和△DEF的三边长,然后判断它们是否对应成比例即可.【题目详解】△ABC和△DEF相似,理由如下:由勾股定理,得:AC=,AB=2,BC=5,DF=2,DE=4,EF=2,,所以,△ABC∽△DEF.【题目点拨】本题考查相似三角形的判定,找准对应边成比例即可.23、(1)-45;(2)2+4.【解题分析】
(1)利用二次根式的乘法运算法则化简求出即可;(2)利用二次根式的除法运算法则化简求出即可.【题目详解】(1)==-18×=-45;(2)÷=(20-18+4)÷=()÷=2+4.【题目点拨】本题考查了二次根式的混合运算,正确化简二次根式是解题的关键.24、(1)见解析;(2).【解题分析】
(1)利用ASA证明△AFO≌△BE,然后根据全等三角形的对应边相等即可得AF=BE;(2)如图,过点E作EN⊥BC,垂足为N,根据正方形的边长求得对角线的长,继而求得OC的长且∠ECN=45°,由E是OC的中点,可得OE=EC=1,在直角三角形ENC中利用勾股定理进行求解即可得.【题目详解】(1)∵正方形ABCD,∴AO=BO,∠AOF=∠BOE=90°∵AM⊥BE,∠AFO=∠BFM,∴∠FAO=∠EBO在△AFO和△BEO中,∴△AFO≌△BE(ASA),∴AF=BE;(2)如图,过点E作EN⊥BC,垂足为N,∵正方形ABCD的边长为2,∴AC==4,CO=2,且∠ECN=45°,∵E是OC的中点,∴OE=EC=1,由EN⊥BC,∠ECN=45°,得∠CEN=45°,∴EN=CN,设EN=CN=x,∵+=,∴+=1,∴因为x>0,x,即:点E到BC边的距离是.【题目点拨】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理的应用等,正确添加辅助线、熟练应用相关的性质与定理是解题的关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准私人房产合同
- 2024年素质教育培训行业市场调查研究及发展战略规划报告
- 宁夏吸塑托盘项目资金申请报告
- 2024-2027年中国软件建模行业市场调研及未来发展趋势预测报告
- 湖北省2024年初中学业水平考试模拟训练语文试卷含答案
- 2020-2025年中国安全防护服行业市场运营现状及投资战略咨询报告
- 年产吨无氧光亮铜杆项目可行性研究报告
- 2024-2027年中国UWB定位市场竞争态势及行业投资潜力预测报告
- 2025年全球核燃料行业市场调研与发展前景预测分析报告
- 智能工业车辆项目可行性研究报告申请立项
- 空气动力学仿真技术:湍流模型:k-ε湍流模型原理与应用
- 高中期末考试考风考纪及诚信教育
- 2025届广东省深圳市深圳外国语九年级物理第一学期期末经典试题含解析
- 机械工程技术训练智慧树知到期末考试答案章节答案2024年北京航空航天大学
- 人工智能导论智慧树知到期末考试答案章节答案2024年哈尔滨工程大学
- 医生与患者关系中的信任与治疗
- 心衰患者的容量管理中国专家共识-共识解读
- 山东省济南市2023-2024学年高一上学期1月期末考试数学试题(解析版)
- 文字学概要完整版本
- ce自我声明模板
- 钢闸门监理评估报告
评论
0/150
提交评论