版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
级安徽省淮北市西园中学2024届数学八下期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形2.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.103.下图入口处进入,最后到达的是()A.甲 B.乙 C.丙 D.丁4.矩形一个内角的平分线把矩形的一边分成和,则矩形的周长为()A.和 B. C. D.以上都不对5.如图,矩形ABCD中,E,F分别是线段BC,AD的中点,AB=2,AD=4,动点P沿EC,CD,DF的路线由点E运动到点F,则△PAB的面积s是动点P运动的路径总长x的函数,这个函数的大致图象可能是A.A B.B C.C D.D6.如图,矩形中,,,点从点出发,沿向终点匀速运动,设点走过的路程为,的面积为,能正确反映与之间函数关系的图象是()A. B. C. D.7.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AO=CO D.AC⊥BD8.如图,在平面直角坐标系中,直线与双曲线交于、两点,且点的坐标为,将直线向上平移个单位,交双曲线于点,交轴于点,且的面积是.给出以下结论:(1);(2)点的坐标是;(3);(4).其中正确的结论有A.1个 B.2个 C.3个 D.4个9.如图,平行四边形ABCD中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接BD,将△BCD绕点B旋转,当BD(即BD′)与AD交于一点E,BC(即BC′)同时与CD交于一点F时,下列结论正确的是()①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF的周长的最小值是4+2A.①② B.②③ C.①②④ D.①②③④10.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图折叠,使点A与点B重合,则折痕DE的长是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,,、分别是、的中点,平分,交于点,若,,则的长是______.12.已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为_____.13.如图,在R△ABC中,∠ABC=90°,AB=22,BC=1,BD是AC边上的中线,则BD=________。14.如图,平行四边形ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,连接AP,若S△APH=2,则S四边形PGCD=______.15.在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.16.写出一个二次项系数为1,解为1与﹣3的一元二次方程:____________.17.如图,梯形ABCD中,AD∥BC,AD=6BC=14,P、Q分别为BD、AC的中点,则PQ=____.18.如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
三、解答题(共66分)19.(10分)正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)已知点F在线段BC上.①若AB=BE,求∠DAE度数;②求证:CE=EF;(2)已知正方形边长为2,且BC=2BF,请直接写出线段DE的长.20.(6分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.(1)求k的值;(2)如果这个方程有两个整数根,求出它的根.21.(6分)如图,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.请直接写出线段AF,AE的数量关系;将绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;若,,在图的基础上将绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.22.(8分)为了解某中学学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:(1)x,a,b;(2)补全上面的条形统计图;(3)若该校共有学生5000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.23.(8分)某校八年级学生进行了一次视力调查,绘制出频数分布表和频数直方图的一部分如下:请根据图表信息完成下列各题:(1)在频数分布表中,的值为,的值是;(2)将频数直方图补充完整;(3)小芳同学说“我的视力是此次调查所得数据的中位数”,你觉得小芳同学的视力应在哪个范围内?(1)若视力在不小于1.9的均属正常,请你求出视力正常的人数占被调查人数的百分比.24.(8分)如图,在正方形网格中,每个小正方形的边长为1,ABC为格点三角形(即A,B,C均为格点),求BC上的高.25.(10分)某公司第一季度花费3000万元向海外购进A型芯片若干条,后来,受国际关系影响,第二季度A型芯片的单价涨了10元/条,该公司在第二季度花费同样的钱数购买A型芯片的数量是第一季度的80%,求在第二季度购买时A型芯片的单价。26.(10分)解不等式组并求出其整数解
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选D.2、B【解题分析】
解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【题目点拨】本题考查角平分线的作图原理和平行四边形的性质.3、C【解题分析】
根据平行四边形的性质和对角线的定义对命题进行判断即可.【题目详解】等腰梯形也满足此条件,可知该命题不是真命题;根据平行四边形的判定方法,可知该命题是真命题;根据题意最后最后结果为丙.故选C.【题目点拨】本题考查命题和定理,解题关键在于熟练掌握平行四边形的性质和对角线的定义.4、A【解题分析】
利用角平分线得到∠ABE=∠CBE,矩形对边平行得到∠AEB=∠CBE.那么可得到∠ABE=∠AEB,可得到AB=AE.那么根据AE的不同情况得到矩形各边长,进而求得周长.【题目详解】∵矩形ABCD中BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE.∴AB=AE.平分线把矩形的一边分成3cm和5cm.当AE=3cm时:则AB=CD=3cm,AD=CB=8cm则矩形的周长是:22cm;当AE=5cm时:AB=CD=5cm,AD=CB=8cm,则周长是:26cm.故选A.【题目点拨】本题主要运用了矩形性质,角平分线的定义和等角对等边知识,正确地进行分情况讨论是解题的关键.5、C【解题分析】
分点P在EC、CD、DF上运动,根据三角形面积公式进行求解即可得.【题目详解】当点P在EC上运动时,此时0≤x≤2,PB=2+x,则S△PAB==×2(2+x)=x+2;当点P在CD运动时,此时2<x≤4,点P到AB的距离不变,为4,则S△PAB=×2×4=4;当点P在DF上运动时,此时4<x≤6,AP=2+(6-x)=8-x,S△PAB==×2(8-x)=8-x,观察选项,只有C符合,故选C.【题目点拨】本题考查了动点问题的函数图象,分情况求出函数解析式是解题的关键.6、C【解题分析】
首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的长度一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.【题目详解】解:从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:.故选:C.【题目点拨】此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.7、D【解题分析】
根据平行四边形的对边平行和平行线的性质可对A进行判断;根据平行四边形的对角相等可对B进行判断;根据平行四边形的对边相等可对A进行判断;根据平行四边形的对角线互相平分可对D进行判断.【题目详解】A、在▱ABCD中,∵AB∥CD,∴∠1=∠2,所以A选项结论正确;B、在▱ABCD中,∠BAD=∠BCD,所以B选项结论正确;C、在▱ABCD中,AO=CO,所以C选项的结论正确;D、在▱ABCD中,OA=OC,OB=OD,所以D选项结论错误.故选D.【题目点拨】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.8、C【解题分析】
(1)把A(4,a)代入,求得A为(4,2),然后代入求得k=8;(2)联立方程,解方程组即可求得B(-4,-2);
(3)根据同底等高的三角形相等,得出S△ABC=S△ABF;
(4)根据S△ABF=S△AOF+S△BOF列出,解得。【题目详解】解:(1)直线经过点,,,点在双曲线上,,故正确;(2)解得或,点的坐标是,故正确;(3)将直线向上平移个单位,交双曲线于点,交轴于点,,和是同底等高,,故错误;(4),,解得,故正确;故选:.【题目点拨】本题考查了反比例函数和一次函数的交点,待定系数法求反比例函数的解析式,三角形的面积等,求得交点坐标是解题的关键.9、C【解题分析】
根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.【题目详解】∵AB=BC=CD=AD=4,∠A=∠C=60°,∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°.∵将△BCD绕点B旋转到△BC'D'位置,∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',∴△ABE≌△BFD,∴AE=DF,BE=BF,∠AEB=∠BFD,∴∠BED+∠BFD=180°.故①正确,③错误;∵∠ABD=60°,∠ABE=∠DBF,∴∠EBF=60°.故②正确;∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,∴当EF最小时.∵△DEF的周长最小.∵∠EBF=60°,BE=BF,∴△BEF是等边三角形,∴EF=BE,∴当BE⊥AD时,BE长度最小,即EF长度最小.∵AB=4,∠A=60°,BE⊥AD,∴EB=2,∴△DEF的周长最小值为4+2.故④正确.故选C.【题目点拨】本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.10、D【解题分析】
先通过勾股数得到,再根据折叠的性质得到,,,设,则,,在中利用勾股定理可计算出x,然后在中利用勾股定理即可计算得到DE的长.【题目详解】直角三角形纸片的两直角边长分别为6,8,,又折叠,,,,设,则,,在中,,即,解得,在中,故选D.【题目点拨】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等也考查了勾股定理.二、填空题(每小题3分,共24分)11、.【解题分析】
根据三角形中位线定理得到DE∥AB,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF,计算即可.【题目详解】解:、分别是、的中点,,,,,平分,,,,,故答案为.【题目点拨】本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.12、y=﹣3x【解题分析】
设函数解析式为y=kx,把点(-1,3)代入利用待定系数法进行求解即可得.【题目详解】设函数解析式为y=kx,把点(-1,3)代入得3=-k,解得:k=-3,所以解析式为:y=-3x,故答案为y=-3x.【题目点拨】本题考查了利用待定系数法求函数解析式,熟练掌握待定系数法是解题的关键.13、1.5【解题分析】
利用勾股定理求出AC的长,再根据直角三角形斜边上的中线等于斜边的一半,就可求出BD的长.【题目详解】解:在Rt△ABC中,AC=A∵BD是AC边上的中线,∴AC=2BD∴BD=3÷2=1.5故答案为:1.5【题目点拨】本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.14、1.【解题分析】
根据平行四边形的判定定理得到四边形HPFD、四边形PGCF是平行四边形,根据平行四边形的性质、三角形的面积公式计算即可.【题目详解】∵EF∥BC,GH∥AB,∴四边形HPFD、四边形PGCF是平行四边形,∵S△APH=2,CG=2BG,∴S△DPH=2S△APH=4,∴平行四边形HPFD的面积=1,∴平行四边形PGCF的面积=×平行四边形HPFD的面积=4,∴S四边形PGCD=4+4=1,故答案为1.【题目点拨】本题考查的是平行四边形的判定和性质、三角形的面积计算,掌握平行四边形的性质定理是解题的关键.15、70°【解题分析】
在平行四边形ABCD中,∠C=∠A,则求出∠A即可.【题目详解】根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,∵∠A=70°,∴∠C=70°.故答案为:70°.【题目点拨】此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.16、x2+2x﹣3=0.【解题分析】
用因式分解的形式写出方程,再化为一般形式即可【题目详解】解:(x-1)(x+3)=0,
即x2+2x-3=0,
故答案为:x2+2x-3=0【题目点拨】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.17、1.【解题分析】
首先连接DQ,并延长交BC于点E,易证得△ADQ≌△CEQ(ASA),即可求得DQ=EQ,CE=AD=6,继而可得PQ是△DBE的中位线,则可求得答案.【题目详解】解:连接DQ,并延长交BC于点E,
∵AD∥BC,
∴∠DAQ=∠ECQ,
在△ADQ和△CEQ中,
,
∴△ADQ≌△CEQ(ASA),
∴DQ=EQ,CE=AD=6,
∴BE=BC-CE=11-6=8,
∵BP=DP,
∴PQ=BE=1.
故答案为:1.【题目点拨】本题考查梯形的性质、全等三角形的判定与性质以及三角形的中位线的性质.注意掌握辅助线的作法,注意掌握数形结合思想的应用.18、③【解题分析】分析:根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.详解:∵BD=CD,DE=DF,∴四边形BECF是平行四边形,①BE⊥EC时,四边形BECF是矩形,不一定是菱形;②AB=AC时,∵D是BC的中点,∴AF是BC的中垂线,∴BE=CE,∴平行四边形BECF是菱形.③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;故答案是:②.点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:①定义;②四边相等;③对角线互相垂直平分.三、解答题(共66分)19、(1)①22.5°;②证明见解析;(2)或.【解题分析】
(1)①先求得∠ABE的度数,然后依据等腰三角形的性质和三角形内角和定理求得∠BAE的度数,然后可求得∠DAE度数;②先利用正方形的对称性可得到∠BAE=∠BCE,然后在证明又∠BAE=∠EFC,通过等量代换可得到∠BCE=∠EFC;(2)当点F在BC上时,过点E作MN⊥BC,垂直为N,交AD于M.依据等腰三角形的性质可得到FN=CN,从而可得到NC的长,然后可得到MD的长,在Rt△MDE中可求得ED的长;当点F在CB的延长线上时,先根据题意画出图形,然后再证明EF=EC,然后再按照上述思路进行解答即可.【题目详解】(1)①∵ABCD为正方形,∴∠ABE=45°,又∵AB=BE,∴∠BAE(180°﹣45°)=67.5°,∴∠DAE=90°﹣67.5°=22.5°;②∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE,又∵∠ABC=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF;(2)如图1,过点E作MN⊥BC,垂直为N,交AD于M,∵CE=EF,∴N是CF的中点,∵BC=2BF,∴,又∵四边形CDMN是矩形,△DME为等腰直角三角形,∴CN=DM=ME,∴EDDMCN;如图2,过点E作MN⊥BC,垂直为N,交AD于M,∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE,又∵∠ABF=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF,∴FN=CN,又∵BC=2BF,∴FC=3,∴CN,∴EN=BN,∴DE,综上所述:ED的长为或.【题目点拨】本题考查了正方形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,正确添加辅助线并灵活运用相关知识是解本题的关键.20、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.【解题分析】
(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【题目详解】解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k为负整数,∴k=﹣2,﹣2.(2)当k=﹣2时,不符合题意,舍去;当k=﹣2时,符合题意,此时方程的根为x2=x2=2.【题目点拨】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.21、(1)证明见解析;(2)①②或.【解题分析】
如图中,结论:,只要证明是等腰直角三角形即可;如图中,结论:,连接EF,DF交BC于K,先证明≌再证明是等腰直角三角形即可;分两种情形a、如图中,当时,四边形ABFD是菱形、如图中当时,四边形ABFD是菱形分别求解即可.【题目详解】如图中,结论:.理由:四边形ABFD是平行四边形,,,,,,,是等腰直角三角形,.故答案为.如图中,结论:.理由:连接EF,DF交BC于K.四边形ABFD是平行四边形,,,,,,,,,,,在和中,,≌,,,,是等腰直角三角形,.如图中,当时,四边形ABFD是菱形,设AE交CD于H,易知,,,如图中当时,四边形ABFD是菱形,易知,综上所述,满足条件的AE的长为或.【题目点拨】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.22、(1)50;20;30;(2)图见解析;(3)2000人。【解题分析】
(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;
(2)根据a的值,补全条形统计图即可;
(3)由中国诗词大会的百分比乘以5000即可得到结果.【题目详解】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,;
故答案为:50;20;30;
(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:
(3)根据题意得:5000×
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术开发合同(2篇)
- 2025年度数据中心通风排烟系统建设与维护服务合同2篇
- 个人向公司借款合同(2024年)
- 2025版民房建筑工程劳务分包合同4篇
- 2025年建筑保温材料专用黏结剂销售合同3篇
- 2025年度农用车出口贸易代理合同范本3篇
- 2025年度能源行业个人劳务派遣及安全生产合同3篇
- 2025年度个人企业全额承包经营服务合同规范3篇
- 2025年度智能培训班租赁合同范本3篇
- 二零二五模具加工企业临时工用工合同范本4篇
- 副总经理招聘面试题与参考回答(某大型国企)2024年
- PDCA循环提高护士培训率
- 2024-2030年中国智慧水务行业应用需求分析发展规划研究报告
- 《狮子王》电影赏析
- 河北省保定市定州市2025届高二数学第一学期期末监测试题含解析
- 中医护理人文
- 2024-2030年中国路亚用品市场销售模式与竞争前景分析报告
- 货物运输安全培训课件
- 前端年终述职报告
- 2024小说推文行业白皮书
- 市人民医院关于开展“改善就医感受提升患者体验主题活动”2023-2025年实施方案及资料汇编
评论
0/150
提交评论