江苏省扬州市广陵区2023-2024学年八年级上学期期末数学试题(含答案)_第1页
江苏省扬州市广陵区2023-2024学年八年级上学期期末数学试题(含答案)_第2页
江苏省扬州市广陵区2023-2024学年八年级上学期期末数学试题(含答案)_第3页
江苏省扬州市广陵区2023-2024学年八年级上学期期末数学试题(含答案)_第4页
江苏省扬州市广陵区2023-2024学年八年级上学期期末数学试题(含答案)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-2024学年第一学期期末考试八年级数学试题(满分:150分考试时间:120分钟)2024.1.24友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效.一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.杭州亚运会给世界带来了一场展示体育精神和亚洲团结的盛会,下列关于体育运动的图标中,是轴对称图形的是()A. B. C. D.2.在实数中是无理数的有()A.2个 B.3个 C.4个 D.5个3.下列各式计算正确的是()A. B. C. D.4.一次函数的图象经过第一、三、四象限,则化简所得的结果是()A. B. C. D.5.已知点都在直线上,则的大小关系是()A. B. C. D.6.如图,已知,那么添加下列一个条件后,不能判定的是()(第6题)A. B. C. D.7.如图,在平面直角坐标系中,已知,点的坐标分别是则点的坐标是()(第7题)A. B. C. D.8.如图,四边形中,,在上分别找一点、,使周长最小时,则的度数为()(第8题)A. B. C. D.二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)9.已知一个正数的两个平方根分别是和,则这个正数等于______.10.在中,是斜边上的中线,如果,那么______.11.等腰三角形的一个内角是,则它的底角度数是______.12.扬州中国大运河博物馆占地200亩,总建筑面积79373.59平方米,主体由博物馆和大运塔两部分组成.将数字79373.59精确到千位并用科学记数法表示的结果为______.13.已知点与点关于轴对称,则点的坐标为______.14.设为实数,已知,则______.15.将直线向上平移3个单位后经过点,则的值为______.16.如图,在直角坐标系中,的顶点在轴上,顶点在轴上,,,点的坐标为,点和点关于成轴对称,且交轴于点.则点的坐标为______.(第16题)17.如图,在中,,点在边上.将沿折叠,使点落在点处,连接,则的最小值为______.(第17题)18.如图,点的坐标是为坐标原点,轴于轴于,点是线段的中点,过点的直线交线段于点,连接,若平分,则的值为______.(第18题)三、解答题(本大题共有10小题,共96分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:(2)解方程:20.(本题满分8分)如图,交于点.(1)线段与有怎样的数量关系?证明你的结论.(2)与有怎样的数量关系?证明你的结论.21.(本题满分8分)在由单位正方形(每个小正方形边长都为1)组成的网格中,的顶点均在格点上.(1)把向左平移4个单位,再向上平移2个单位得到,请画出,并写出点的坐标;(2)请画出关于轴对称的,并求出的面积.22.(本题满分8分)如图,折叠长方形纸片,使点落在边上的点处,折痕为.已知.求的长.23.(本题满分10分)已知一次函数,它的图像与两坐标轴所围成的图形的面积等于2.(1)求的值;(2)若函数的图象交轴于正半轴,则当取何值时,的值是正数?24.(本题满分10分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.新春佳节,两家均推出了优惠方案,甲采摘园的优惠方案:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为(千克),在甲采摘园所需总费用为(元),在乙采摘园所需总费用为(元),图中折线表示与之间的函数关系.(1)求与之间的函数关系式;(2)当游客采摘15千克的草莓时,你认为他在哪家草莓园采摘更划算?为什么?25.(本题满分10分)如图,在中,是的角平分线,于,点在边上,连接.(1)求证:;(2)若,试说明与的数量关系;(3)在(2)的条件下,若,则的长为______.(用含的代数式表示)26.(本题满分10分)如图,已知直线交轴于,交轴于.(1)求直线向右平移2个单位得到的直线的函数表达式;(2)求直线关于对称的直线的函数表达式;(3)点在直线上,若,求点坐标.27.(本题满分12分)如图,在中,平分交斜边于点,动点从点出发,沿折线向终点运动.(1)点在上运动的过程中,当______时,与的面积相等;(2)点在折线上运动的过程中,若是等腰三角形,求的度数;(3)若点是斜边的中点,当动点在上运动时,线段所在直线上存在另一动点,使两线段的长度之和,即的值最小,则此______.(直接写出答案)28.(本题满分12分)如图①,直线分别与轴交于两点,过点的直线交轴负半轴于点. 图① 图②(1)求直线的函数表达式.(2)在直线上是否存在点,使得?若存在,求出点坐标:若不存请说明理由;(3)如图②,为轴正半轴上的一动点,以为直角顶点、为腰在第一象限内作等腰直角三角形,连接.请直接写出的最大值.2023—2024学年八年级第一学期期末考试数学试卷参考答案及评分标准一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CCBDACDB二、填空题(本大题共10小题,每小题3分,共30分)9.910.4.811.4012.13.14.15.216.17.18.1或3三、解答题(本大题共102分)19.(1)解:原式.(2)解:20.,证明:在和中.21.解:(1)如图,即为所求.点的坐标为.(2)如图,即为所求.的面积为.22.解:由折叠而来,.在中,,,.设,则,在中,,即,解得:.23.解:(1)当时,,一次函数图象与轴的交点坐标为;当时,,一次函数图象与轴的交点坐标为.,解得:.(2)函数的图象交轴于正半轴,一次函数为,的值是正数,,解得.故当时,的值是正数.24.解:(1)根据题意得,甲、乙两采摘园优惠前的草莓销售价格:(元/千克).;当时,;当时,设,由题意的:,解得,,与之间的函数关系式为:(2)当时,,,,他在甲家草莓园采摘更划算.25.(1)证明:,,在和中,,;(2)解:.理由:由(1)得:,,在和中,,,.,;(3)解:由(2)知,,,由(1)知.,.,.,.故答案为:26.解:(1)直线向右平移2个单位得到的直线的函数表达式为,即,故答案为;(2)在直线上,这两点关于的对称点为,设直线的解析式为,,解得,直线的解析式为:,故答案为;(3)直线交轴于,交轴于.,,设的坐标为,,,即,解得或2,或.27.解:(1)解:当时,与的面积相等理由如下:,平分,,在和中,与的面积相等.(2)由(1)得:,分两种情况:①点在上,如图1所示: 图1若,则,;若时,则,若,;①点在上时,如图2所示: 图2存在,,,,,;综上所述,的度数为或或或.(3)当在上,且时,最小,作于,如图3所示: 图3则,平分,,又,,,当点三点共线时,的值最小,则,,,点是斜边的中点,28.解:(1)直线分别与轴交于两点,令,则,,且设直线的解析式为,,解得,,直线的解析式为(2)解:由(1)可知直线的解析式为,直线的解析式为,,,如图所示,点在直线上,过点作轴于,设,,,,①当,即时,,若,则,解得,则;②当,即时,,若,则,解得,(舍去);③当,即时,,若,则,解得,则;综

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论