2024届北京市东城区第十一中学数学八下期末联考模拟试题含解析_第1页
2024届北京市东城区第十一中学数学八下期末联考模拟试题含解析_第2页
2024届北京市东城区第十一中学数学八下期末联考模拟试题含解析_第3页
2024届北京市东城区第十一中学数学八下期末联考模拟试题含解析_第4页
2024届北京市东城区第十一中学数学八下期末联考模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市东城区第十一中学数学八下期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l2、l3、l4上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为()A.4cm2 B.5cm2 C.20cm2 D.30cm22.下列各曲线中能表示y是x的函数的是()A. B. C. D.3.满足下列条件的三角形中,不是直角三角形的是()A.三内角的度数之比为1∶2∶3B.三内角的度数之比为3∶4∶5C.三边长之比为3∶4∶5D.三边长的平方之比为1∶2∶34.设0<k<2,关于x的一次函数y=kx+2(1-x),当1≤x≤2时的最大值是()A.2k-2B.k-1C.kD.k+15.下列各点中,不在函数的图象上的点是()A.(3,4) B.(﹣2,﹣6) C.(﹣2,6) D.(﹣3,﹣4)6.若一个正多边形的一个内角是135°,则这个正多边形的边数是()A.10 B.9 C.8 D.67.正n边形每个内角的大小都为108°,则n=()A.5 B.6 C.7 D.88.如图,中,是边的中点,平分于已知则的长为()A. B.C. D.9.下列多项式能分解因式的是()A. B. C. D.10.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=19611.下列四个图形是中心对称图形的是()A. B. C. D.12.如图,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图所示,则这条线段可能是图中的().A.线段EC B.线段AE C.线段EF D.线段BF二、填空题(每题4分,共24分)13.一次函数y=kx+b的图象如图所示,若点A(3,m)在图象上,则m的值是__________.14.如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.15.如图,在边长为2的正方形ABCD中,点E是边AD中点,点F在边CD上,且FE⊥BE,设BD与EF交于点G,则△DEG的面积是___16.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=_____.17.如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,AO=2,BO=3,BC=4.将正方形沿箭头方向推,使点D落在y轴正半轴上点D’处,则点C的对应点C’的坐标为____.18.若三角形的三边a,b,c满足,则该三角形的三个内角的度分别为____________.三、解答题(共78分)19.(8分)在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1所示,∠APE=____________°②当BP=BC时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.20.(8分)如图,在等腰△ABC中,AC=BC,D在BC上,P是射线AD上一动点.(1)如图①,若∠ACB=90°,AC=8,CD=6,当点P在线段AD上,且△PCD是等腰三角形时,求AP长.(2)如图②,若∠ACB=90°,∠APC=45°,当点P在AD延长线上时,探究PA,PB,PC的数量关系,并说明理由.(3)类比探究:如图③,若∠ACB=120°,∠APC=30°,当点P在AD延长线上时,请直接写出表示PA,PB,PC的数量关系的等式.21.(8分)某中学为了解该校学生的体育锻炼情况,随机抽查了该校部分学生一周的体育锻炼时间的情况,并绘制了如下两幅不完整的统计图:根据以上信息解答以下问题:(1)本次抽查的学生共有多少名,并补全条形统计图;(2)写出被抽查学生的体育锻炼时间的众数和中位数;(3)该校一共有1800名学生,请估计该校学生一周体育锻炼时间不低于9小时的人数.22.(10分)在矩形中,,,是边上一点,以点为直角顶点,在的右侧作等腰直角.(1)如图1,当点在边上时,求的长;(2)如图2,若,求的长;(3)如图3,若动点从点出发,沿边向右运动,运动到点停止,直接写出线段的中点的运动路径长.23.(10分)有一个等腰三角形的周长为。(1)写出底边关于腰长的函数关系式;(2)写出自变量的取值范围。24.(10分)甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用天,且甲队单独植树天和乙队单独植树天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)甲、乙两队共同植树天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的倍.那么甲队至少再单独施工多少天?25.(12分)如图,小明为测量一棵树的高度,他在距树处立了一根高为的标杆,然后小明调整自己的位置至,此时他与树相距,他的眼睛、标杆的顶端和树顶端在同一直线上.已知,求树的高度.26.某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池

修建费用(万元/个)

可供使用户数(户/个)

占地面积(m2/个)

A型

3

20

48

B型

2

3

6

政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

过D作直线EF与平行线垂直,交l1与点E,交l4于点F.再证明,得到,故可求的CD的长,进而求出正方形的面积.【题目详解】过D作直线EF与l2垂直,交l1与点E,交l4于点F.,即四边形ABCD为正方形在和中即正方形的面积为20故选C.【题目点拨】本题主要考查平行线的性质,关键在于利用三角形全等求正方形的边长.2、B【解题分析】因为对于函数中自变量x的取值,y有唯一一个值与之对应,故选B.3、B【解题分析】试题解析:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;

B、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;

C、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;

D、因为1+2=3,所以是直角三角形.

故选B.4、C【解题分析】试题解析:原式可以化为:y=(k−2)x+2,∵0<k<2,∴k−2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k−2)+2=k.故选C.5、C【解题分析】

将各选项的点逐一代入进行计算判断即可.【题目详解】A、当x=3时,y==4,

故(3,4)在函数图象上,正确,不符合题意;B、当x=-2时,y==-6,

故(-2,-6)在函数图象上,正确,不符合题意;C、当x=-2时,y==-6≠6,

故(-2,6)不在函数图象上,错误,符合题意;D、当x=-3时,y==-4,

故(-3,-4)在函数图象上,正确,不符合题意;故答案为:C.【题目点拨】本题考查反比例函数的图象,属于简单题,要注意计算细心.6、C【解题分析】

根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【题目详解】∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数==1,∴这个正多边形的边数是1.故选:C.【题目点拨】本题主要考查正多边形内角与外角度数,掌握多边形的外角之和为360°,是解题的关键.7、A【解题分析】试题分析:∵正n边形每个内角的大小都为108°,∴每个外角为:72°,则n=360°÷72°=1.故选A.考点:多边形内角与外角.8、A【解题分析】

延长BE交AC于F,由三线合一定理,得到△ABF是等腰三角形,则AF=AB=10,BE=EF,根据三角形中位线定理计算即可.【题目详解】解:延长交于点.,平分,为等腰三角形.,E为的中点又为的中点为的中位线,故选:A.【题目点拨】本题考查的是三角形中位线定理、三线合一定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.9、B【解题分析】

直接利用分解因式的基本方法分别分析得出答案.【题目详解】解:A、x2+y2,无法分解因式,故此选项错误;

B、x2y-xy2=xy(x-y),故此选项正确;

C、x2+xy+y2,无法分解因式,故此选项错误;

D、x2+4x-4,无法分解因式,故此选项错误;

故选:B.【题目点拨】本题考查对分解因式的方法的理解和运用,分解因式的步骤是:第一步,先看看能否提公因式;第二步,再运用公式法,①平方差公式:a2-b2=(a+b)(a-b);②a2±2ab+b2=(a±b)2,第三步:再考虑用其它方法,如分组分解法等.10、C【解题分析】

试题分析:一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:50+50(1+x)+50(1+x)2=1.故选C.11、D【解题分析】

如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形.

根据中心对称图形的概念结合各图形的特点求解.【题目详解】解:A.不是中心对称图形,本选项不符合题意;

B不.是中心对称图形,本选项不符合题意;

C.不是中心对称图形,本选项不符合题意;

D.是中心对称图形,本选项符合题意.

故选D.【题目点拨】本题考查的是中心对称的概念,属于基础题.12、B【解题分析】分析:求出当点E与点D重合时,即x=0时EC、AE、EF、BF的长可排除C、D;当点E与点C重合时,即x=2时,求出EC、AE的长可排除A,可得答案.详解:当点E与点D重合时,即x=0时,EC=DC=2,AE=AD=2,∵∠A=60°,∠AEF=30°,∴∠AFD=90°,在Rt△ADF中,∵AD=2,∴AF=AD=1,EF=DF=ADcos∠ADF=,∴BF=AB-AF=1,结合图象可知C、D错误;当点E与点C重合时,即x=2时,如图,连接BD交AC于H,此时EC=0,故A错误;∵四边形ABCD是菱形,∠BAD=60°,∴∠DAC=30°,∴AE=2AH=2ADcos∠DAC=2×2×=2,故B正确.故选:B.点睛:本题主要考查动点问题的函数图象与菱形的性质、解直角三角形的应用,结合函数图象上特殊点的实际意义排除法求解是解此题的关键.二、填空题(每题4分,共24分)13、2.5【解题分析】

先用待定系数法求出直线解析式,再将点A代入求解可得.【题目详解】解:将(-2,0)、(0,1)代入y=kx+b,得:,解得:∴y=x+1,将点A(3,m)代入,得:即故答案为:2.5【题目点拨】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.14、(2,−2)或(6,2).【解题分析】

设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.【题目详解】∵一次函数解析式为线y=-x+4,令x=0,解得y=4∴B(0,4),令y=0,解得x=4∴A(4,0),如图一,∵四边形OADC是菱形,设C(x,-x+4),∴OC=OA=,整理得:x2−6x+8=0,解得x1=2,x2=4,∴C(2,2),∴D(6,2);如图二、如图三,∵四边形OADC是菱形,设C(x,-x+4),∴AC=OA=,整理得:x2−8x+12=0,解得x1=2,x2=6,∴C(6,−2)或(2,2)∴D(2,−2)或(−2,2)∵D是y轴右侧平面内一点,故(−2,2)不符合题意,故答案为(2,−2)或(6,2).【题目点拨】本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.15、【解题分析】

过点G作GM⊥AD于M,先证明△ABE∽△DEF,利用相似比计算出DF=,再利用正方形的性质判断△DGM为等腰直角三角形得到DM=MG,设DM=x,则MG=x,EM=1-x,然后证明△EMG∽△EDF,则利用相似比可计算出GM,再利用三角形面积公式计算S△DEG即可.【题目详解】解:过点G作GM⊥AD于M,如图,∵FE⊥BE,∴∠AEB+∠DEF=90°,而∠AEB+∠ABE=90°,∴∠ABE=∠DEF,而∠A=∠EDF=90°,∴△ABE∽△DEF,∴AB:DE=AE:DF,即2:1=1:DF,∴DF=,∵四边形ABCD为正方形,∴∠ADB=45°,∴△DGM为等腰直角三角形,∴DM=MG,设DM=x,则MG=x,EM=1-x,∵MG∥DF,∴△EMG∽△EDF,∴MG:DF=EM:ED,即x:=(1-x):1,解得x=,∴S△DEG=×1×=,故答案为.【题目点拨】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.熟练运用相似比计算线段的长.16、3或7【解题分析】分两种情况:(1)当AE交BC于点E时;在平行四边形ABCD中,则AD∥BC,DC=AB,AD=BC∴∠AEB=∠EAD,∵∠DAB的平分线交BC于E,∴∠AEB=∠BAE,∴∠AEB=∠BAE,∴AB=BE,设AD=x,z则BE=x-2=5∴AD=5+2=7cm,(2)当AE交BC于点E,交CD于点F∵ABCD为平行四边形,∴AB=DC=5cm,AD=BC,AD∥BC.∴∠E=∠EAD,又∵BE平分∠BAD,∴∠EAD=∠EAB,∴∠EAB=∠E,∴BC+CE=AB=5,∴AD=BC=5−2=3(cm).故答案为3或7点睛:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,关键是要分两种情况讨论解答.17、(5,)【解题分析】

由题知从正方形变换到平行四边形时,边的长度没变,从而求出即可【题目详解】由题知从正方形变换到平行四边形时,AD’=AD=BC=4,D’C’=AB=5,∵AO=2,根据勾股定理,则OD’=,则D’(0,),故C’的坐标为(5,)【题目点拨】熟练掌握图形变化中的不变边和勾股定理计算是解决本题的关键18、45°,45°,90°.【解题分析】

根据勾股定理的逆定理可知这个三角形是直角三角形,然后根据等腰三角形的判定得到这个三角形是等腰直角三角形,于是角度可求.【题目详解】解:∵三角形的三边满足,

∴设a=k,b=k,c=k,

∴a=b,

∴这个三角形是等腰三角形,

∵a2+b2=k2+k2=2k2=(k)2=c2,

∴这个三角形是直角三角形,

∴这个三角形是等腰直角三角形,

∴三个内角的度数分别为:45°,45°,90°.

故答案为:45°,45°,90°.【题目点拨】本题考查了等腰直角三角形的判定和性质,勾股定理的逆定理的运用,熟记勾股定理的逆定理是解题的关键.三、解答题(共78分)19、(1)①45;②不变化;(2)成立;(3)详见解析.【解题分析】

(1)①②根据正方形的性质、线段的垂直平分线的性质即可判断;(2)画出图形即可判断,结论仍然成立;(3)如图2-1中或2-2中,作作EF⊥BC,EG⊥AB,证Rt△EAG≅Rt△EPF得∠AEG=∠PEF.由∠ABC=∠EFB=∠EGB=90°知∠GEF=∠GEP+∠PEF=90°.继而得∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.从而得出∠APE=∠EAP=45°.【题目详解】解(1)①当点P与点B重合时,如图1-1所示:∵四边形ABCD是正方形,∴∠APE=45°②当BP=BC时,如图1-2所示,①中的结论不发生变化;故答案为:45°,不变化.(2)(2)如图2-1,如图2-2中,结论仍然成立;故答案为:成立;(3)证明一:如图所示.过点E作EF⊥BC于点F,EG⊥AB于点G.∵点E在AP的垂直平分线上,∴EA=EP.∵四边形ABCD为正方形,∴BD平分∠ABC.∴EG=EF.∴RtΔEAG≌RtΔEPF.∴∠AEG=∠PEF.∵∠ABC=∠EFB=∠EGB=90°,∴∠GEF=∠GEP+∠PEF=90°.∴∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.∴∠APE=∠EAP=45°.证明二:如图所示.过点E作EF⊥AD于点F,延长FE交BC于点G,连接CE.∵点E在AP的垂直平分线上,∴EA=EP.∵四边形ABCD为正方形,∴BA=BC   ∴ΔBAE≌ΔBCE.∴EC=EA=EP,∠EAB=∠ECB.∴∠EPC=∠ECP=∠EAB.又∵∠BPE+∠EPC=180°,∴∠BPE+∠EAB=180°.又∵∠EAB+∠ABP+∠BPE+∠AEP=360°   ∴∠AEP=90°.∴∠APE=∠EAP=45°.【题目点拨】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、中垂线的性质等知识点20、(1)满足条件的AP的值为2.8或4或2;(2)PA﹣PB=PC.理由见解析;(3)PA﹣PB=PC.理由见解析.【解题分析】

(1)如图①中,作CH⊥AD于H.利用面积法求出CH,利用勾股定理求出DH,再求出PD,接下来分三种情形解决问题即可;(2)结论:PA﹣PB=PC.如图②中,作EC⊥PC交AP于E.只要证明△ACE≌△BCP即可解决问题;(3)结论:PA﹣PB=PC.如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.只要证明△ACE≌△BCP即可解决问题;【题目详解】(1)如图①中,作CH⊥AD于H.在Rt△ACD中,AD==10,∵×AC×DC=×AD×CH,∴CH=,∴DH==,①当CP=CD,∵CH⊥PD,∴PH=DH=,∴PD=,∴PA=AD﹣PD=10﹣=.②当CD=DP时,DP=1.AP=10﹣1=4,③当CP=PD时,易证AP=PD=2,综上所述,满足条件的AP的值为2.8或4或2.(2)结论:PA﹣PB=PC.理由:如图②中,作EC⊥PC交AP于E.∵∠PCE=90°,∠CPE=42°,∴∠CEP=∠CPE=42°,∴CE=CP,PE=PC,∵∠ACB=∠ECP=90°,∴∠ACE=∠BCP,∵CA=CB,∴△ACE≌△BCP,∴AE=PB,∴PA﹣PB=PA﹣EA=PE=PC,∴PA﹣PB=PC.(3)结论:PA﹣PB=PC.理由:如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.∵∠CEP=180°﹣120°﹣30°=30°,∴∠CEP=∠CPE,∴CE=CP.作CH⊥PE于H,则PE=PC,∵∠ACB=∠ECP,∴∠ACE=∠BCP,∵CA=CB,∴△ACE≌△BCP,∴AE=PB,∴PA﹣PB=PA﹣EA=PE=PC.【题目点拨】本题考查三角形综合题、等腰三角形的性质、全等三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21、(1)40,图形见解析;(2)众数是8,中位数是8.5;(3)900名【解题分析】

(1)本次抽查的学生数=每天锻炼10小时的人数÷每天锻炼10小时的人数占抽查学生的百分比;一周体育锻炼时间为9小时的人数=抽查的人数-(每天锻炼7小时的人数+每天锻炼8小时的人数+每天锻炼10小时的人数);根据求得的数据补充条形统计图即可;(2)一组数据中出现次数最多的数是众数,结合条形图,8出现了18次,所以确定众数就是18;把一组数据按从小到大的数序排列,处于中间位置的一个数字(或两个数字的平均值)叫做这组数据的中位数。由图可知第20、21个数分别是8、9,所以中位数是它们的平均数;(3)该校学生一周体育锻炼时间不低于9小时的估计人数

=该校学生总数×一周体育锻炼时间不低于9小时的频率.【题目详解】(1)解:本次抽查的学生共有8÷20%=40(名)一周体育锻炼时间为9小时的人数是40-(2+18+8)=12(名)条形图补充如下:(2)解:由条形图可知,8出现了18次,此时最多,所以众数是8将40个数据按从小到大的顺序排列,第20、21个数分别是8、9,所以中位数是(8+9)÷2=8.5(3)解:1800×=900(名)答:估计该校学生一周体育锻炼时间不低于9小时的大约有900名.【题目点拨】此题主要考查统计调查的应用,解题的关键是根据题意得到本次抽查的学生的总人数.22、(1);(2);(3)线段的中点的运动路径长为.【解题分析】

(1)如图1中,证明△ABE≌△ECF(AAS),即可解决问题.(2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.证明△EFM≌△DNC(AAS),设NC=FM=x,利用勾股定理构建方程即可解决问题.(3)如图3中,在BC上截取BM=BA,连接AM,MF,取AM的中点H,连接HQ.由△ABE∽△AMF,推出∠AMF=∠ABE=90°,由AQ=FQ,AH=MH,推出,HQ∥FM,推出∠AHQ=90°,推出点Q的运动轨迹是线段HQ,求出MF的长即可解决问题.【题目详解】(1)如图1中,四边形是矩形,,,,,,,,.(2)如图2中,延长,交于点,过点作于点.同理可证,设,则,,,,,,,,,即在中,,在中,,在中,,即,解得或(舍弃),即,(3)如图3中,在上截取,连接,,取的中点,连接.,,,,,,,,,,,点的运动轨迹是线段,当点从点运动到点时,,,,线段的中点的运动路径长为.【题目点拨】本题考查了全等三角形、勾股定理、相似三角形,掌握矩形的性质及全等三角形的性质和判定、利用勾股定理列方程、相似三角形的性质是解题的关键.23、(1);(2)【解题分析】

(1)等腰三角形的两个腰是相等的,根据题中条件即可列出腰长和底边长的关系式.(2)根据2腰长的和大于底边长及底边长为正数可得自变量的取值.【题目详解】(1)∵等腰三角形的两腰相等,周长为30,∴2x+y=30,∴底边长y与腰长x的函数关系式为:y=-2x+30;(2)∵两边之和大于第三边,∴2x>y,∴x>,∵y>0,∴x<1,x的取值范围是:7.5<x<1.【题目点拨】本题主要考查对于一次函数关系式的掌握以及三角形性质的应用,判断出等腰三角形腰长的取值范围是解决本题的难点.24、(1)甲队单独完成此项任务需1天,乙队单独完成此项任务需20天;(2)甲队至少再单独施工2天.【解题分析】

(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,根据甲队单独植树7天和乙队单独植树5天的工作量相同,可得出关于x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论