




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省盐城市响水县数学八下期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.菱形C.等腰直角三角形 D.平行四边形2.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A.40° B.45° C.50° D.55°3.以下图形中,既是中心对称图形,又是轴对称图形的是()A.三角形 B.菱形 C.等腰梯形 D.平行四边形4.下列式子运算正确的是()A. B.C. D.5.如图,把一个含45°角的直角三角尺BEF和个正方形ABCD摆放在起,使三角尺的直角顶点和正方形的顶点B重合,连接DF,DE,M,N分别为DF,EF的中点,连接MA,MN,下列结论错误的是()A.∠ADF=∠CDE B.△DEF为等边三角形C.AM=MN D.AM⊥MN6.如图,在平行四边形ABCD中,F,G分别为CD,AD的中点,BF=2,BG=3,,则BC的长度为()A. B. C.2.5 D.7.设矩形的面积为S,相邻两边的长分别为a,b,已知S=2,b=,则a等于()A.2 B. C. D.8.对于函数y=-x+1,下列结论正确的是()A.它的图象不经过第四象限 B.y的值随x的增大而增大C.它的图象必经过点(0,1) D.当x>2时,y>09.当a满足条件()时,式子在实数范围内有意义.A.a<−3 B.a≤−3 C.a>−3 D.a≥−310.如图,已知▱ABCD中,点M是BC的中点,且AM=6,BD=12,AD=4,则该平行四边形的面积为()A.24 B.36 C.48 D.7211.如图,在中,,,垂足为,点是边的中点,,,则()A.8 B.7.5 C.7 D.612.如图,△ABC三边的长分别为3、4、5,点D、E、F分别是△ABC各边中点,则△DEF的周长和面积分别为()A.6,3 B.6,4 C.6, D.4,6二、填空题(每题4分,共24分)13.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是_____cm.14.如图,是矩形的边上一点,以为折痕翻折,使得点的对应点落在矩形内部点处,连接,若,,当是以为底的等腰三角形时,___________.15.“若实数满足,则”,能够说明该命题是假命题的一组的值依次为_.16.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上的点C反射后经过点B(6,2),则光线从A点到B点经过的路线长度为.17.从某市5000名初一学生中,随机地抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是__________.18.如图所示,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=_______.三、解答题(共78分)19.(8分)已知一次函数y=1x-4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1,d1.(1)求点A,B的坐标;(1)当P为线段AB的中点时,求d1+d1的值;(3)直接写出d1+d1的范围,并求当d1+d1=3时点P的坐标;(4)若在线段AB上存在无数个点P,使d1+ad1=4(a为常数),求a的值.20.(8分)已知a,b满足|a﹣|++(c﹣4)2=1.(1)求a,b,c的值;(2)判断以a,b,c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.21.(8分)如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OB=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.(1)求OB的长度;(2)设DP=x,CQ=y,求y与x的函数表达式(不要求写自变量的取值范围);(3)若OCQ是等腰三角形,求CQ的长度.22.(10分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.23.(10分)某市米厂接到加工大米任务,要求天内加工完大米.米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止,设甲、乙两车间各自加工大米数量与甲车间加工时间(天)之间的关系如图1所示;未加工大米与甲车间加工时间(天)之间的关系如图2所示,请结合图像回答下列问题(1)甲车间每天加工大米__________;=______________;(2)直接写出乙车间维修设备后,乙车间加工大米数量与(天)之间的函数关系式,并指出自变量的取值范围.24.(10分)如图,四边形ABCD中,∠A=∠ABC=90∘,AD=3,BC=5,E是边CD的中点,连接BE并延长与AD的延长线相交于点(1)求证:四边形BDFC是平行四边形;(2)若BD=BC,求四边形BDFC的面积.25.(12分)如图,在平行四边形ABCD中,,延长DA于点E,使得,连接BE.求证:四边形AEBC是矩形;过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若,,求的面积.26.如图,直线与轴、轴分别相交于.点的坐标为,点是线段上的一点.(1)求的值;(2)若的面积为2,求点的坐标.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
根据轴对称图形与中心对称图形的概念求解.【题目详解】A、等边三角形,是轴对称图形,不是中心对称图形,故此选项错误;B、菱形,是轴对称图形,也是中心对称图形,故此选项正确;C、等腰直角三角形,是轴对称图形,不是中心对称图形,故此选项错误;D、平行四边形,不是轴对称图形,是中心对称图形,故此选项错误.故选B.【题目点拨】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、A【解题分析】解:∵AE∥BD,∴∠CBD=∠E=35°.∵BD平分∠ABC,∴∠CBA=70°.∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.点睛:考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.3、B【解题分析】
关于某条直线对称的图形叫轴对称图形.绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形.【题目详解】解:A、三角形既不是中心对称图形,也不是轴对称图形;B、菱形既是中心对称图形,也是轴对称图形;C、等腰梯形是轴对称图形;D、平行四边形是中心对称图形.故选B.【题目点拨】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、D【解题分析】
利用二次根式的加减法对A、B进行判断;根据分母有理化对C进行判断;根据完全平方公式对D进行判断.【题目详解】解:A、原式=﹣,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=,所以C选项错误;D、原式=9﹣6+10=19﹣6,所以D选项正确.故选:D.【题目点拨】题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5、B【解题分析】
连接DE,先根据直角三角形的性质得出AM=DF,再根据△BEF是等腰直角三角形得出AF=CE,由SAS定理得出△ADF≌△CDE,可得∠ADF=∠CDE,DE=DF,再根据点M,N分别为DF,EF的中点,得出MN是△EFD的中位线,故MN=DE,MN∥DE,可得AM=MN,由MN∥DE,可得∠FMN=∠FDE,根据三角形外角性质可得∠AMF=2∠ADM,由∠ADM+∠DEC+∠FDE=∠FMN+∠AMF=90°,可得MA⊥MN,只能得到△DEF是等腰三角形,无法得出是等边三角形,据此即可得出结论.【题目详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠BAD=∠C=90°,∵点M是DF的中点,∴AM=DF,∵△BEF是等腰直角三角形,∴BF=BE,∴AF=CE,∴△ADF≌△CDE(SAS),∴∠ADF=∠CDE,DE=DF,∵点M,N分别为DF,EF的中点,∴MN是△EFD的中位线,∴MN=DE,∴AM=MN;∵MN是△EFD的中位线,∴MN∥DE,∴∠FMN=∠FDE,∵AM=MD,∴∠MAD=∠ADM,∵∠AMF是△ADM外角,∴∠AMF=2∠ADM.又∵∠ADM=∠DEC,∴∠ADM+∠DEC+∠FDE=∠FMN+∠AMF=90°,∴MA⊥MN,∵DE=DF,∴△DEF是等腰三角形,无法得出是等边三角形,综上,A、C、D正确,B错误,故选B.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,三角形外角的性质,直角三角形斜边中线性质等,综合性较强,熟练掌握和灵活应用相关知识是解题的关键.6、A【解题分析】
延长AD、BF交于E,过点E作EM⊥BG,根据F是中点得到△CBF≌△DEF,得到BE=2BF=4,根据得到BM=BE=2,ME=2,故MG=1,再根据勾股定理求出EG的长,再得到DE的长即可求解.【题目详解】延长AD、BF交于E,∵F是中点,∴CF=DF,又AD∥BC,∴∠CBF=∠DEF,又∠CFB=∠DFE,∴△CBF≌△DEF,∴BE=2BF=4,过点E作EM⊥BG,∵,∴∠BEM=30°,∴BM=BE=2,ME=2,∴MG=BG-BM=1,在Rt△EMG中,EG==∵G为AD中点,∴DG=AD=DE,∴DE==,故BC=,故选A.【题目点拨】此题主要考查平行四边形的线段求解,解题的关键是熟知全等三角形的判定及勾股定理的运用.7、B【解题分析】
利用矩形的边=面积÷邻边,列式计算即可.【题目详解】解:a=S÷b=2÷=,故选:B.【题目点拨】此题考查二次根式的乘除法,掌握长方形面积计算公式是解决问题的根本.8、C【解题分析】
根据一次函数的图象及性质逐一进行判断即可.【题目详解】A,函数图象经过一、二、四象限,故该选项错误;B,y的值随x的增大而减小,故该选项错误;C,当时,,故该选项正确;D,当时,,故该选项错误;故选:C.【题目点拨】本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.9、D【解题分析】
根据二次根式有意义的条件是被开方数大于等于0,即可求得答案.【题目详解】解:根据题意知,要使在实数范围内有意义.则,解得:,故选:D.【题目点拨】本题主要考查二次根式的意义,掌握二次根式中被开方数为非负数是解题的关键.10、C【解题分析】分析:由平行四边形的性质,可得△BOM∽△AOD,可得出OB⊥OM,进而可求解其面积.解:AM、BD相交于点O,在平行四边形ABCD中,可得△BOM∽△AOD,∵点M是BC的中点,即=,、∴==,∵AM=6,BD=12,∴OM=2,OB=4,在△BOM中,22+42=,∴OB⊥OM∴S△ABD=BD•OA=×12×4=24,∴SABCD=2S△ABD=1.故选C.【点评】本题主要考查平行四边形的性质,能够运用相似三角形求解一些简单的计算问题.11、B【解题分析】
根据直角三角形的性质得到AE=BE=CE=AB=5,根据勾股定理得到CD==3,根据三角形的面积公式即可得到结论.【题目详解】解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,
∴AE=BE=CE=AB=5,
∵CD⊥AB,DE=4,
∴CD==3,
∴S△AEC=S△BEC=×BE•CD=×5×3=7.5,
故选:B.【题目点拨】本题考查了直角三角形斜边上的中线,能求出AE=CE是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半12、C【解题分析】分析:利用三角形中位线定理可知:△DEF∽△ABC,根据其相似比即可计算出△DEF的周长和面积.详解:∵点D、E、F分别是△ABC各边中点,∴△DEF∽△ABC,相似比为:.∴△DEF的周长=的周长=.∵△ABC三边的长分别为3、4、5,∴△ABC是直角三角形.∴△DEF的面积=的面积=.故选:C.点睛:本题主要考查了相似三角形.关键在于根据三角形的中位线定理得出两三角形相似,并得出相似比.二、填空题(每题4分,共24分)13、5或【解题分析】
利用分类讨论的思想可知,此题有两种情况:一是当这个直角三角形的两直角边分别为、时;二是当这个直角三角形的一条直角边为,斜边为.然后利用勾股定理即可求得答案.【题目详解】当这个直角三角形的两直角边分别为、时,则该三角形的斜边的长为:(),当这个直角三角形的一条直角边为,斜边为时,则该三角形的另一条直角边的长为:().故答案为或.【题目点拨】此题主要考查学生对勾股定理的理解和掌握,注意分类讨论是解题关键.14、【解题分析】
过点B'作B'F⊥AD,延长FB'交BC与点G,可证四边形ABGF是矩形,AF=BG=4,∠BGF=90°,由勾股定理可求B'F=3,可得B'G=2,由勾股定理可求BE的长.【题目详解】解:如图,过点B'作B'F⊥AD,延长FB'交BC与点G,∵四边形ABCD是矩形∴AD=BC=8,∠DAB=∠ABC=90°∵AB'=B'D,B'F⊥AD∴AF=FD=4,∵∠DAB=∠ABC=90°,B'F⊥AD∴四边形ABGF是矩形∴AF=BG=4,∠BGF=90°∵将△ABE以AE为折痕翻折,∴BE=B'E,AB=AB'=5在Rt△AB'F中,∴B'G=2在Rt△B'EG中,B'E2=EG2+B'G2,∴BE2=(4-BE)2+4∴BE=故答案为:.【题目点拨】本题考查了翻折变换,矩形的判定与性质,等腰三角形的性质,勾股定理,求B'G的长是本题的关键.15、1,2,1【解题分析】
列举一组数满足a<b<c,不满足a+b<c即可.【题目详解】解:当a=1,b=2,c=1时,满足a<b<c,不满足a+b<c,所以说明该命题是假命题的一组a,b,c的值依次为1,2,1.故答案为1,2,1.【题目点拨】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.16、3【解题分析】
解:如图,过点B作BD⊥x轴于点D,根据已知条件易得△AOC∽△BDC,根据相似三角形对应边的比相等可得,又因点A(0,1),点B(6,2),可得0A=1,BD=2,OD=6,代入即可求得OC=2,CD=4,由勾股定理求得AC=,BD=2,即可得光线从A点到B点经过的路线长度为3.考点:相似三角形的应用;坐标与图形性质.17、众数【解题分析】
服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【题目详解】解:由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故答案为:众数.【题目点拨】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.18、【解题分析】解:∵四边形ABCD为正方形,∴∠ABC=90°.∵△ABP绕点B顺时针方向旋转能与△CBP′重合,∴∠PBP′=∠ABC=90°,PB=P′B=2,∴△PBP′为等腰直角三角形,∴PP′=PB=.故答案为.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等腰直角三角形性质.三、解答题(共78分)19、(1)A(1,0)B(0,-4);(1)d1+d1=3;(3)当d1+d1=3时点的坐标为点p1(1,1)、p1(,);(4)在线段上存在无数个p点,a=1.【解题分析】
(1)对于一次函数解析式,分别令y=0求出x的值,令x=0,求出y的值,即可求出A与B的坐标,(1)求出P点坐标,即可求出d1+d1的值;.(3)根据题意确定出d1+d1的范围,设P(m,1m-4),表示出d1+d1,分类讨论m的范围,根据d1+d1=3求出m的值,即可确定出P的坐标;.(4)设P(m,1m-4),表示出d1与d1,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d1,代入d1+ad1=4,根据存在无数个点P求出a的值即可.【题目详解】(1)如图所示,令y=0时,x=1,x=0时,y=-4,∴A(1,0)B(0,-4)(1)当为线段的中点时,P(,)即P(1,-1)∴d1+d1=3(3)d1+d1≥1∵P点在一次函数y=1x-4的图象上,故设点P(m,1m-4),∴d1+d1=︱xp︱+︱yp︱=︱m︱+︱1m-4︱.由题当d1+d1=3时,根据1m-4=1(m-1)可分析,当0≤m≤1时,d1+d1=m+4-1m=3,此时解得,m=1∴得点p1(1,1).当m>1时,同理,d1+d1=m+1m-4=3,解得m=,所以得点p1(,).当m<0时,d1+d1=-m+4-1m=3,解得m=,即不符合m<0,故此时不存在点p.综上所述,当d1+d1=3时点的坐标为点p1(1,1)、p1(,).(4)设点P(m,1m-4),∴d1=︱1m-4︱,d1=︱m︱,∵P在线段AB上,且点A(1,0),B(0,-4),∴0≤m≤1.即d1=4-1m,d1=m.∵使d1+ad1=4(a为常数),∴代入数值得4-1m+am=4,即(a-1)m=0,根据题意在线段上存在无数个p点,所以a=1.【题目点拨】此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,线段中点坐标公式,绝对值的代数意义,以及坐标与图形性质,熟练掌握绝对值的代数意义是解本题的关键.20、(1)a=,b=5,c=4;(2)【解题分析】
(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.【题目详解】(1)∵a,b,c满足|a-|++(c-4)2=1,∴|a-|=1,=1,(c-4)2=1,解得a=,b=5,c=4.(2)∵a=,b=5,c=4,∴a+b=+5>4.∴以a,b,c为边能构成三角形.∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形.【题目点拨】本题考查了勾股定理的逆定理,非负数的性质,熟练掌握勾股定理的逆定理是解题的关键.21、(1)5;(2);(3)当或时,⊿OCQ是等腰三角形.【解题分析】
(1)利用勾股定理先求出AC的长,继而根据已知条件即可求得答案;(2)延长QO交AD于点E,连接PE、PQ,先证明△AEO≌△CQO,从而得OE=OQ,AE=CQ=y,由垂直平分线的性质可得PE=PQ,即,在Rt⊿EDP中,有,在Rt⊿PCQ中,,继而可求得答案;(3)分CQ=CO,OQ=CQ,OQ=OC三种情况分别进行讨论即可求得答案.【题目详解】(1)∵四边形ABCD是长方形,∴∠ABC=90°,∴,∴OB=OA=OC=;(2)延长QO交AD于点E,连接PE、PQ,∵四边形ABCD是长方形,∴CD=AB=6,AD=BC=8,AD//BC,∴∠AEO=∠CQO,在△COQ和△AOE中,,∴△AEO≌△CQO(SAS),∴OE=OQ,AE=CQ=y,∴ED=AD-AE=8-y,∵OP⊥OQ,∴OP垂直平分EQ,∴PE=PQ,∴,∵PD=x,∴CP=CD-CP=6-x,在Rt⊿EDP中,,在Rt⊿PCQ中,,∴,∴;(3)分三种情况考虑:①如图,若CQ=CO时,此时CQ=CO=5;②如图,若OQ=CQ时,作OF⊥BC,垂足为点F,∵OB=OC,OF⊥BC,∴BF=CF=BC=4,∴,∵OQ=CQ,∴,∴,∴,∴;③若OQ=OC时,此时点Q与点B重合,点P在DC延长线上,此情况不成立,综上所示,当或时,⊿OCQ是等腰三角形.【题目点拨】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,一次函数的应用等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.22、(1)证明见试题解析;(2)35【解题分析】
(1)由折叠的性质可知∠C=∠AED=90°,因为∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【题目详解】(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10,由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°,∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE即CD解得:CD=3,在Rt△ACD中,由勾股定理得AC即32解得:AD=35【题目点拨】1.相似三角形的判定与性质;2.翻折变换(折叠问题).23、解:(1);;(2),【解题分析】
(1)由图2可知,乙停工后,第二天均为甲生产的即186-161=20;第一天总共生产220-181=31,即a+20=31,所以a为11;
(2)由图1可知,函数关系式经过点(2,11)和点(1,120),即可得到函数关系式.且2≤x≤1.【题目详解】解:(1)由图2可知,乙停工后,第二天均为甲生产的,即186-161=20;
∴甲车间每天加工大米20t
第一天总共生产:220-181=31,
即a+20=31,所以a为11;
故答案为20(t),11
(2)设函数关系式y=kx+b
由图1可知,函数关系式经过点(2,11)和点(1,120),
代入得:y=31x-11,且2≤x≤1.【题目点拨】本题主要考查一次函数的知识点,熟练掌握一次函数的性质是解答本题的关键.24、(1)见解析;(2)四边形BDFC的面积=20.【解题分析】
(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工培训简约
- 营销人员专项培训课件
- 陶行知生活教育理论实践启示
- 雪碧饮品培训教程课件
- 新生入学培训课件模板
- 建设公司培训
- 物业保安礼节礼仪培训
- 安管礼仪培训
- 个人情感培训
- 重性肺炎护理查房
- 反分裂反渗透教育主题班会
- 2024年甘肃省普通高校招生本科批(C段)历史类投档最低分数线
- 2024年福州第十一中学招聘笔试真题
- 【泉州:寒街孤影寻暖意 一抹亮色映霜花】中原地产2024年泉州楼市分析报告正式版
- 小学生反分裂课件
- 外科病房医院感染防控工作职责
- DB34∕T 3262.2-2018 普通公路养护预算 第二部分:定额
- 2025年省定远县第三批“曲阳雁归”工程公开招录50名村(社区)干部高频重点提升(共500题)附带答案详解
- 旅游学概论(李天元)课件
- 大数据技术原理与应用-林子雨版-课后习题答案(文档).文档
- 医院信息化网络安全培训
评论
0/150
提交评论