2024届迪庆市重点中学数学八年级第二学期期末学业水平测试试题含解析_第1页
2024届迪庆市重点中学数学八年级第二学期期末学业水平测试试题含解析_第2页
2024届迪庆市重点中学数学八年级第二学期期末学业水平测试试题含解析_第3页
2024届迪庆市重点中学数学八年级第二学期期末学业水平测试试题含解析_第4页
2024届迪庆市重点中学数学八年级第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届迪庆市重点中学数学八年级第二学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A. B.C. D.2.在Rt△ABC中,斜边长AB=3,AB²+AC²+BC²的值为()A.18 B.24 C.15 D.无法计算3.多项式x2m﹣xm提取公因式xm后,另一个因式是()A.x2﹣1 B.xm﹣1 C.xm D.x2m﹣14.已知:等边三角形的边长为6cm,则一边上的高为()A. B.2 C.3 D.5.如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k-m)x+b<0的解集为()A. B. C. D.6.下列事件中,是必然事件的是()A.3天内会下雨B.经过有交通信号灯的路口遇到红灯C.打开电视,正在播广告D.367人中至少有2个人的生日相同7.如图,在□ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于()A.2 B.3 C.4 D.58.函数y=﹣x﹣3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.下列各式从左到右的变形为分解因式的是()A.x(x﹣y)=x2﹣xy B.x2+2xy+1=x(x+2y)+1C.(y﹣1)(y+1)=y2﹣1 D.x(x﹣3)+3(x﹣3)=(x+3)(x﹣3)10.如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.9 B.12 C.9 D.18二、填空题(每小题3分,共24分)11.若关于x的分式方程的解为正数,则m的取值范围是_____.12.计算:_____.13.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.14.若n边形的每个内角都是,则________.15.在中,对角线,相交于点,若,,,则的周长为_________.16.直线与直线平行,且经过,则直线的解析式为:__________.17.菱形的两条对角线长分别是6和8,则菱形的边长为_____.18.计算:=___________.三、解答题(共66分)19.(10分)如图,在中,点是对角线的中点,点在上,且,连接并延长交于点F.过点作的垂线,垂足为,交于点.(1)求证:;(2)若.①求证:;②探索与的数量关系,并说明理由.20.(6分)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,1.通过数据分析,列表如下:班级平均分中位数众数方差八(1)85bc22.8八(2)a858519.2(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.21.(6分)先化简,再求值:,其中a=-.22.(8分)为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.23.(8分)如图,一次函数的图像过点和点,以线段为边在第一象限内作等腰直角△ABC,使(1)求一次函数的解析式;(2)求出点的坐标(3)点是轴上一动点,当最小时,求点的坐标.24.(8分)因式分解:am2﹣6ma+9a.25.(10分)如图1,菱形纸片,对其进行如下操作:把翻折,使得点与点重,折痕为;把翻折,使得点与点重合,折痕为(如图2),连结.设两条折痕的延长线交于点.(1)请在图2中将图形补充完整,并求的度数;(2)四边形是菱形吗?说明理由.26.(10分)学校规定学生的学期总评成绩满分为100分,学生的学期总评成绩根据平时成绩、期中考试成绩和期末考试成绩按照2∶3∶5的比确定,小欣的数学三项成绩依次是85、90、94,求小欣这学期的数学总评成绩.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【题目详解】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.【题目点拨】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.2、A【解题分析】

根据题意运用勾股定理进行分析计算即可得出答案.【题目详解】解:∵Rt△ABC中,斜边是AB,∴AC²+BC²=AB²,∵AB=3,∴AC²+BC²=AB²=9,∴AB²+AC²+BC²=9+9=18.故选:A.【题目点拨】本题考查勾股定理.根据题意正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.3、B【解题分析】

根据多项式提取公因式的方法计算即可.【题目详解】解:x2m﹣xm=xm(xm-1)所以另一个因式为xm-1故选B【题目点拨】本题主要考查因式分解,关键在于公因式的提取.4、C【解题分析】

根据等边三角形的性质三线合一求出BD的长,再利用勾股定理可求高.【题目详解】如图,AD是等边三角形ABC的高,根据等边三角形三线合一可知BD=BC=3,∴它的高AD==,故选:C.【题目点拨】本题考查等边三角形的性质及勾股定理,较为简单,解题的关键是掌握勾股定理.直角三角形两条直角边的平方和等于斜边的平方.5、B【解题分析】

根据函数图像分析即可解题.【题目详解】由函数图像可知一次函数单调递减,正比例函数单调递增,将(k-m)x+b<0变形,即kx+b<mx,对应图像意义为一次函数图像在正比例函数图像下方,即交点P的右侧,∵点P的横坐标为1,∴即为所求解集.故选B【题目点拨】本题考查了一次函数与正比例函数的图像问题,数形结合的解题方法,中等难度,将不等式问题转化为图像问题是解题关键,6、D【解题分析】

根据必然事件的概念.(有些事情我们事先肯定它一定会发生,这些事情称为必然事件.)【题目详解】解:3天内会下雨是随机事件,A错误;经过有交通信号灯的路口遇到红灯是随机事件,B错误;打开电视,正在播广告是随机事件,C错误;367人中至少有2个人的生日相同是必然事件,D正确,故选:D.【题目点拨】本题主要考查必然事件与随机事件的区别,他们的区别在于必然事件一定会发生,随机事件有可能发生,有可能不发生.7、B【解题分析】

由平行四边形的性质可知AD∥BC,AD=BC,利用两直线平行得到一对内错角相等,由BE为角平分线得到一对角相等,等量代换得到∠ABE=∠AEB,利用等角对等边得到AB=AE=4,由AD-AE求出ED的长即可.【题目详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC=7,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AB=AE=4,∴ED=AD-AE=BC-AE=7-4=1.故选:B.【题目点拨】此题考查了平行四边形的性质,角平分线的定义,以及等腰三角形的判定,熟练掌握平行四边形的性质是解本题的关键.8、A【解题分析】

根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.【题目详解】解:∵k=﹣1<0,∴一次函数经过二、四象限;∵b=﹣3<0,∴一次函数又经过第三象限,∴一次函数y=﹣x﹣3的图象不经过第一象限,故选:A.【题目点拨】此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二、四象限,b<0,函数图象经过第三象限.9、D【解题分析】

根据因式分解的定义:将多项式和的形式化为整式积的形式,判断即可.【题目详解】解:A、没把一个多项式转化成几个整式积,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积,故D正确;故选:D.【题目点拨】此题考查了因式分解的意义,熟练掌握因式分解的定义是解本题的关键.10、D【解题分析】

根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的想知道的∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论【题目详解】ABCD为平行四边形,所以,AD∥BC,所以,∠AEG=∠EGF,由折叠可知:∠GEF=∠DEF=60°,所以,∠AEG=60°,所以,∠EGF=60°,所以,三有形EGF为等边三角形,因为EF=6,所以,△GEF的周长为18【题目点拨】此题考查翻折变换(折叠问题),平行四边形的性质,解题关键在于得出∠GEF=∠DEF=60°二、填空题(每小题3分,共24分)11、m>1【解题分析】

先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.【题目详解】解:去分母得,m-1=2x+2,

解得,x=,

∵方程的解是正数,

∴m-1>2,

解这个不等式得,m>1,

∵+1≠2,

∴m≠1,

则m的取值范围是m>1.

故答案为:m>1.【题目点拨】本题考查了分式方程的解,解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.注意分式方程分母不等于2.12、1【解题分析】【分析】根据同分母分式加减法的法则进行计算即可得.【题目详解】==1,故答案为1.【题目点拨】本题考查了同分母分式的加减法,熟练掌握同分母分式加减法的法则是解题的关键.13、0.4m【解题分析】

先证明△OAB∽△OCD,再根据相似三角形的对应边成比例列方程求解即可.【题目详解】∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO.∵∠AOB=∠COD,∴△OAB∽△OCD,∴AO:CO=AB:CD,∴4:1=1.6:CD,∴CD=0.4.故答案为:0.4.【题目点拨】本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.14、1【解题分析】

根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.【题目详解】解:∵n边形的每个内角都是120°,

∴每一个外角都是180°-120°=10°,

∵多边形外角和为310°,

∴多边形的边数为310÷10=1,故答案为:1.【题目点拨】此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于310度.15、21【解题分析】

由在平行四边形ABCD中,AC=14,BD=8,AB=10,利用平行四边形的性质,即可求得OA与OB的长,继而求得△OAB的周长.【题目详解】∵在平行四边形ABCD中,AC=14,BD=8,AB=10,∴OA=AC=7,OB=BD=4,∴△OAB的周长为:AB+OB+OA=10+7+4=21.故答案为:21.【题目点拨】本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.16、【解题分析】

由直线与直线平行,可知k=1,然后把代入中即可求解.【题目详解】∵直线与直线平行,∴k=1,把代入,得1+b=4,∴b=1,∴.故答案为:.【题目点拨】本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.17、1【解题分析】

根据菱形对角线垂直平分,再利用勾股定理即可求解.【题目详解】解:因为菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长为=1.故答案为:1.【题目点拨】此题主要考查菱形的边长求解,解题的关键是熟知菱形的性质及勾股定理的运用.18、【解题分析】

解:2-=故答案为:三、解答题(共66分)19、(1)见解析;(2)①见解析,②,理由见解析.【解题分析】

(1)根据平行四边形的性质得到∠OAF=∠OCE,证明△OAF≌△OCE,根据全等三角形的对应边相等证明结论;(2)①过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,根据三角形的外角性质得到∠BAG=∠BGA;②证明△AME≌△BNG,根据全等三角形的性质得到ME=NG,根据等腰直角三角形的性质得到BE=GC,根据(1)中结论证明即可.【题目详解】(1)证明:∵四边形是平行四边形,∴,,∴,在和中,,∴∴,∵,∴;(2)①过作于,交于,过作于,则,∵,∴,∵,∴,,∵,∴,又,∴,设,则,,∴;②,理由如下:∵,∴,∴,在和中,,∴,∴,在等腰中,,∴,∴,∵,∴.【题目点拨】本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.20、(1)a=86,b=85,c=85;(2)八(2)班前5名同学的成绩较好,理由见解析.【解题分析】【分析】(1)根据平均数、中位数、众数的概念进行解答即可;(2)根据它们的方差进行判断即可解答本题.【题目详解】(1)a=,将八(1)的成绩排序77、85、85、86、92,可知中位数是85,众数是85,所以b=85,c=85;(2)∵22.8>19.2,∴八(2)班前5名同学的成绩较好.【题目点拨】本题考查了平均数、众数、中位数、方差,解题的关键是明确题意,熟练掌握平均数、众数、中位数的求解方法.21、原式=,把代入得,原式=-1.【解题分析】试题分析:根据分式的混合运算法则先化简后再求值.试题解析:考点:分式的混合运算.22、甲、乙两种树苗各购买5000、2000株;甲种树苗至多购买2800株;最少费用为

元.【解题分析】

列方程求解即可;根据题意,甲乙两种树苗的存货量大于等于树苗总量的列出不等式;用x表示购买树苗的总费用,根据一次函数增减性讨论最小值.【题目详解】设购买甲种树苗x株,则购买乙种树苗株,由题意得:解得,则答:甲、乙两种树苗各购买5000、2000株;根据题意得:解得则甲种树苗至多购买2800株设购买树苗的费用为W,根据题意得:随x的增大而减小当时,【题目点拨】本题为一次函数实际应用问题,综合考察一元一次方程、一元一次不等式及一次函数的增减性.23、(1);(2)的坐标是;(3).【解题分析】

(1)根据待定系数法确定函数解析式即可;(2)作CD⊥y轴于点D,由全等三角形的判定定理可得出△ABO≌△CAD,由全等三角形的性质可知OA=CD,故可得出C点坐标;(3)求得B点关于y轴的对称点B′的坐标,连接B′C与y轴的交点即为所求的P点,由B′、C坐标可求得直线B′C的解析式,则可求得P点坐标.【题目详解】解:设直线的解析式为:,把代入可得:,解得:所以一次函数的解析式为:;如图,作轴于点,在与中,,,则的坐标是;如图中,作点关于轴的对称点,连接交轴于,此时的值最小,,,把代入中,可得:,解得:,直线的解析式为,令,得到,.【题目点拨】本题考查的是一次函数的综合题,根据待定系数法求一次函数的解析式、全等三角形的判定与性质,以及轴对称-最短距离,根据题意作出辅助线,构造出全等三角形是解答此题的关键.24、a(m﹣3)1.【解题分析】

先提取公因式,再利用完全平方公式分解因式即可解答【题目详解】原式=a(m1﹣6m+9)=a(m﹣3)1.【题目点拨】此题考查提公因式法和公式法的综合运用,解题关键在于熟练掌握运算法则25、(1)见解析,;(2)四边形是菱形,理由见解析【解题分析】

(1)由菱形的性质可得AD=CD,∠A=∠C=45°,∠ADC=135°,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论