版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省威宁县2024届数学八年级第二学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列式子成立的是()A.=3 B.2﹣=2 C.= D.()2=62.用配方法解一元二次方程x2-8x+3=0,此方程可化为()A.(x-4)2=13 B.(x+4)2=13 C.(x-4)2=19 D.(x+4)2=193.方程的解是()A.4 B.±2 C.2 D.-24.甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:甲乙丙丁平均数(cm)561560561560方差s23.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁5.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<46.下列说法正确的是()A.对应边都成比例的多边形相似 B.对应角都相等的多边形相似C.边数相同的正多边形相似 D.矩形都相似7.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为()A.51 B.31 C.12 D.88.若在实数范围内有意义,则a的取值范围是()A.a≥ B.a≤ C.a> D.a<9.已知反比例函数y=6x的图像上有两点A(a-3,2b)、B(a,b-2),且a<0,则b的取值范围是(▲A.b<2 B.b<0 C.-2<b<0 D.b<-210.数据60,70,40,30这四个数的平均数是()A.40 B.50 C.60 D.70二、填空题(每小题3分,共24分)11.写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).12.将二次函数化成的形式,则__________.13.四边形ABCD为菱形,该菱形的周长为16,面积为8,则∠ABC为_____度.14.如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为___m.15.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=10,则DOE的周长为_____.16.如图,中,AB的垂直平分线DE分别交AB、BC于E、D,若,则的度数为__________17.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=___时,△PQF为等腰三角形.18.平行四边形ABCD中,∠ABC的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是_____.三、解答题(共66分)19.(10分)如图1是一个有两个圆柱形构成的容器,最下面的圆柱形底面半径。匀速地向空容器内注水,水面高度(单位:米)与时间(单位:小时)的关系如图2所示。(1)求水面高度与时间的函数关系式;(2)求注水的速度(单位:立方米/每小时),并求容器内水的体积与注水时间的函数关系式;(3)求上面圆柱的底面半径(壁厚忽略不计)。20.(6分)小华思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小华进行探索,若将点P,Q的位置特殊化:把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E、F分别在边BC、CD上,如图1.此时她证明了AE=AF,请你证明;(1)由以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明;(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,求四边形APCQ的周长的最小值.21.(6分)如图,矩形ABCD中,,,E、F分别是AB、CD的中点求证:四边形AECF是平行四边形;是否存在a的值使得四边形AECF为菱形,若存在求出a的值,若不存在说明理由;如图,点P是线段AF上一动点且求证:;直接写出a的取值范围.22.(8分)某校八(1)班次数学测验(卷面满分分)成绩统计,有的优生,他们的人均分为分,的不及格,他们的人均分为分,其它同学的人均分为分,求全班这次测试成绩的平均分.23.(8分)分解因式:5x2-4524.(8分)如图,在正方形方格纸中,线段AB的两个端点和点P都在小方格的格点上,分别按下列要求画格点四边形.(1)在图甲中画一个以AB为边的平行四边形,使点P落在AB的对边上(不包括端点).(2)在图乙中画一个以AB为对角线的菱形,使点P落在菱形的内部(不包括边界).25.(10分)(1)计算:;(2)先化简,再求值:(-4)÷,其中x=1.26.(10分)解分式方程:(1);(2).
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
运用二次根式的相关定义、运算、化简即可求解.【题目详解】解:A:是求的算术平方根,即为3,故正确;B:2﹣=,故B错误;C:上下同乘以,应为,故C错误;D:的平方应为3,而不是6,故D错误.故答案为A.【题目点拨】本题主要考查二次根式的定义、运算和化简;考查知识点较多,扎实的基础是解答本题的关键.2、A【解题分析】
移项后两边都加上一次项系数一半的平方,写成完全平方式即可.【题目详解】x2-8x=-3,
x2-8x+16=-3+16,
即(x-4)2=13,
故选A.【题目点拨】本题考查了运用配方法解方程,熟练掌握配方法是解题的关键.3、B【解题分析】
解:∵,∴,∴方程的解:,.故选B.考点:1.解一元二次方程-因式分解法;2.因式分解.4、A【解题分析】试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、C【解题分析】
根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.【题目详解】根据题意得△=12﹣1k≥0,解得k≤1.故选C.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣1ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6、C【解题分析】试题分析:根据相似图形的定义,对选项一一分析,排除错误答案.解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;D、矩形属于形状不唯一确定的图形,故错误.故选C.考点:相似图形.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.7、B【解题分析】
设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得【题目详解】解:设白球个数为个,根据题意得,白球数量袋中球的总数=1-14=1.6,所以,解得故选B【题目点拨】本题主要考查了用评率估计概率.8、A【解题分析】
直接利用二次根式有意义则2a+3≥0,进而得出答案.【题目详解】解:在实数范围内有意义,则2a+3≥0,解得:.故选:A.【题目点拨】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.9、C【解题分析】
先根据k>0判断出在每个象限内,y随x的增大而减小,且图象在第一、三象限,再根据a-3<a<0判断出点A、B都在第三象限,然后根据反比例函数的性质得2b>b-2即可.【题目详解】∵反比例函数y=6x中k=6>∴在每个象限内,y随x的增大而减小,且图象在第一、三象限.∵a<0,∴a-3<a<0,∴0>2b>b-2,∴-2<b<0.故选:C.【题目点拨】本题考查了反比例函数的增减性,利用反比例函数的增减性比较大小时,一定要注意“在每一个象限内”比较大小.10、B【解题分析】
用四个数的和除以4即可.【题目详解】(60+70+40+30)÷4=200÷4=50.故选B.【题目点拨】本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).二、填空题(每小题3分,共24分)11、y=2x【解题分析】试题分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.12、【解题分析】
利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【题目详解】解:,,.故答案为:.【题目点拨】本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.13、30或150【解题分析】如图1所示:当∠A为钝角,过A作AE⊥BC,∵菱形ABCD的周长为l6,∴AB=4,∵面积为8,∴AE=2,∴∠ABE=30°,∴∠ABC=60°,当∠A为锐角时,如图2,过D作DE⊥AB,∵菱形ABCD的周长为l6,∴AD=4,∵面积为8,∴DE=2,∴∠A=30°,∴∠ABC=150°,故答案为30或150.14、1【解题分析】
先根据勾股定理求出OB的长,再在Rt△COD中求出OD的长,进而可得出结论.【题目详解】解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB==9m.同理,在Rt△COD中,DO==12m,∴BD=OD﹣OB=12﹣9=1(m).故答案是:1.【题目点拨】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15、1【解题分析】
由平行四边形的性质得出AB=CD,AD=BC,OB=OD=BD=5,得出BC+CD=18,证出OE是△BCD的中位线,DE=CD,由三角形中位线定理得出OE=BC,△DOE的周长=OD+OE+DE=OD+(BC+CD),即可得出结果.【题目详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD=BD=5,∵平行四边形ABCD的周长为36,∴BC+CD=18,∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=OD+(BC+CD)=5+9=1;故答案为:1.【题目点拨】本题考查平行四边形的性质、三角形中位线的性质,熟练运用平行四边形和三角形中位线的性质定理是解题的关键.16、80°.【解题分析】
根据线段的垂直平分线的性质得到DB=DA,得到∠DAB=∠B=40°,根据三角形的外角性质计算即可.【题目详解】解:∵DE是线段AB的垂直平分线,
∴DB=DA,
∴∠DAB=∠B=40°,
∴∠ADC=∠DAB+∠B=80°.
故答案为:80°.【题目点拨】本题考查线段的垂直平分线的性质、三角形的外角性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17、2﹣或.【解题分析】
由勾股定理和含30°角的直角三角形的性质先分别求出AC和BC,然后根据题意把PF和FQ表示出来,当△PQF为等腰三角形时分三种情况讨论即可.【题目详解】解:∵∠ABC=90°,∠ACB=30°,AB=2cm,∴AC=2AB=4cm,BC==2,∵E、F分别是AB、AC的中点,∴EF=BC=cm,BF=AC=2cm,由题意得:EP=t,BQ=2t,∴PF=﹣t,FQ=2﹣2t,分三种情况:①当PF=FQ时,如图1,△PQF为等腰三角形.则﹣t=2﹣2t,t=2﹣;②如图2,当PQ=FQ时,△PQF为等腰三角形,过Q作QD⊥EF于D,∴PF=2DF,∵BF=CF,∴∠FBC=∠C=30°,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠PFQ=∠FBC=30°,∵FQ=2﹣2t,∴DQ=FQ=1﹣t,∴DF=(1﹣t),∴PF=2DF=2(1﹣t),∵EF=EP+PF=,∴t+2(1﹣t)=,t=;③因为当PF=PQ时,∠PFQ=∠PQF=30°,∴∠FPQ=120°,而在P、Q运动过程中,∠FPQ最大为90°,所以此种情况不成立;综上,当t=2﹣或时,△PQF为等腰三角形.故答案为:2﹣或.【题目点拨】勾股定理和含30°角的直角三角形的性质及等腰三角形的判定和性质都是本题的考点,本题需要注意的是分类讨论不要漏解.18、14或1【解题分析】由平行四边形ABCD推出∠AEB=∠CBE,由已知得到∠ABE=∠CBE,推出AB=AE,分两种情况(1)当AE=2时,求出AB的长;(2)当AE=3时,求出AB的长,进一步求出平行四边形的周长.
解:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
∵∠ABC的平分线将AD边分成的两部分的长分别为2和3两部分,当AE=2时,则平行四边形ABCD的周长是14;
(2)当AE=3时,则平行四边形ABCD的周长是1;
故答案为14或1.
“点睛”此题考查了平行四边形的性质:平行四边形的对边相等且平行.注意当有平行线和角平分线出现时,会有等腰三角形出现,解题时还要注意分类讨论思想的应用.
三、解答题(共66分)19、(1);(2);(3)4【解题分析】
(1)由待定系数法可求水面高度h与时间t的函数关系式;(2)由下面的圆柱形的体积=注水的速度×时间,可列方程,求出注水速度,即可求容器内水的体积V与注水时间t的函数关系式;(3)由上面的圆柱形的体积=注水的速度×时间,可列方程,求解即可.【题目详解】(1)当0≤t≤1时,设水面高度h与时间t的函数关系式:h=kt,且过(1,1)∴1=k∴当0≤t≤1时,设水面高度h与时间t的函数关系式:h=t当1<t≤2时,设水面高度h与时间t的函数关系式:h=mt+n,且过(1,1),(2,5)∴解得:∴当1<t≤2时,设水面高度h与时间t的函数关系式:h=4t-3所以水面高度与时间的函数关系是(2)由图2知,注满下面圆柱所花的时间是小时,下面圆柱的高度是米,设注水的速度为立方米/每小时,那么有得注水的速度(立方米∕每小时);容器内水的体积与注水时间的函数关系式为:(3)由题意知,上面圆柱的容积与下面圆柱的容积相等,且它的高度为4米,于是有,解得即上面圆柱的底面半径为米.【题目点拨】本题是一次函数综合题,考查待定系数法求解析式,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1)见解析;(1)见解析;(3).【解题分析】
(1)根据四边形ABCD是菱形,首先证明∠B=∠D,AB=AD,再结合题意证明,进而证明△AEB≌△AFD,即可证明AE=AF.(1)根据(1)的证明,再证明△AEP≌△AFQ(ASA),进而证明AP=AQ.(3)根据题意连接AC,则可证明△ABC为等边三角形,再计算AE的长度,则可计算长APCQ的周长的最小值.【题目详解】(1)证明:如图1,∵四边形ABCD是菱形,∴∠B+∠C=180°,∠B=∠D,AB=AD,∵∠EAF=∠B,∴∠EAF+∠C=180°,∴∠AEC+∠AFC=180°,∵AE⊥BC,∴AF⊥CD,在△AEB和△AFD中,,∴△AEB≌△AFD(AAS),∴AE=AF;(1)证明:如图3,由(1)得,∠PAQ=∠EAF=∠B,AE=AF,∴∠EAP=∠FAQ,在△AEP和△AFQ中,,∴△AEP≌△AFQ(ASA),∴AP=AQ;(3)解:如图2,连接AC,∵∠ABC=60°,BA=BC=2,∴△ABC为等边三角形,∵AE⊥BC,∴BE=EC=1,同理,CF=FD=1,∴AE==1,∴四边形APCQ的周长=AP+PC+CQ+AQ=1AP+CP+CF+FQ=1AP+1CF,∵CF是定值,当AP最小时,四边形APCQ的周长最小,∴当AP=AE时,四边形APCQ的周长最小,此时四边形APCQ的周长的最小值=1×1+2=2+2.【题目点拨】本题主要考查菱形的性质,关键在于第三问中的最小值的计算,要使周长最小,当AP=AE时,四边形APCQ的周长最小.21、(1)证明见解析;(2)不存在;(3)①证明见解析;②.【解题分析】
(1)由矩形性质得,,再证且即可;(2)不存在,由知:当时,四边形AECF为菱形,可得,此方程无解;(3)由平行线性质得,证得,,由,,得OE是三角形的中位线,所以,根据中垂线性质得;如图当P与F重合时,,的取值范围是.【题目详解】证明:四边形ABCD是矩形,,,又、F分别是边AB、CD的中点,,四边形AECF是平行四边形;解:不存在,由知:四边形AECF是平行四边形;当时,四边形AECF为菱形,四边形ABCD是矩形,,,,方程无解,故不存在这样的a;解:如图,四边形AECF是平行四边形,,,,,,,,,;如图,当P与F重合时,,的取值范围是.【题目点拨】本题考核知识点:矩形性质,菱形判定,三角形中位线.解题关键点:综合运用矩形性质和菱形判定和三角形中位线性质.22、平均分1【解题分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同模板对公账号
- 定制产品生产与销售代理合同(二零二四年度)
- 设备机械采购合同
- 国旗课件教学
- 工程转让协议书范本
- 合伙协议电子版人合伙开店协议书合同模板
- 《中医诊断学闻诊》课件
- 课件的设计与制作技巧
- 《建筑基础楼梯》课件
- 音乐课件下载
- 智能治理:提高政府决策的准确性和效率
- 2024年滴眼剂市场份额分析:全球滴眼剂市场销售额达到了4.89亿美元
- 学术规范与论文写作智慧树知到答案2024年浙江工业大学
- 2024年典型事故案例警示教育手册15例
- 软件工程实验报告_学生成绩管理系统
- 九年义务教育全日制小学音乐教学器材配备目录
- MSDS(10-100048)聚脂烤漆
- 船舶风险辩识、评估及管控须知
- 减资专项审计报告
- 投标流程及管理制度
- 章质谱法剖析PPT课件
评论
0/150
提交评论