广东省佛山市南海区南海实验中学2024届数学八下期末检测模拟试题含解析_第1页
广东省佛山市南海区南海实验中学2024届数学八下期末检测模拟试题含解析_第2页
广东省佛山市南海区南海实验中学2024届数学八下期末检测模拟试题含解析_第3页
广东省佛山市南海区南海实验中学2024届数学八下期末检测模拟试题含解析_第4页
广东省佛山市南海区南海实验中学2024届数学八下期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市南海区南海实验中学2024届数学八下期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.16 B.19 C.22 D.252.若直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是A.-1 B.0 C.1 D.23.如图,□ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1 B.2 C.3 D.44.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形 B.矩形 C.菱形 D.正方形5.如图,在平行四边形ABCD中,对角线AC和BD相交于点O,点E是BC边的中点,OE=1,则AB的长为()A.2 B.1C. D.46.若点A(3,y1),B(﹣2,y2)都在直线y=﹣x+n上,则y1与y2的大小关系是()A.y1<y2 B.y1>y2C.y1=y2 D.以上都有可能7.下列命题正确的是().A.任何事件发生的概率为1B.随机事件发生的概率可以是任意实数C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生8.计算a2a-b-bA.a-b B.a+b C.a2-b2 D.19.如图,一棵大树在离地面9米高的处断裂,树顶落在距离树底部12米的处(米),则大树断裂之前的高度为()A.9米 B.10米 C.21米 D.24米10.直线与直线在同一平面直角坐标系中的图象如图所示,则关于的不等式的解集为()A. B. C. D.11.如图所示,在直角坐标系内,原点O恰好是▱ABCD对角线的交点,若A点坐标为(2,3),则C点坐标为()A.(-3,-2) B.(-2,3) C.(-2,-3) D.(2,-3)12.小明用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的函数关系式是()A. B. C. D.二、填空题(每题4分,共24分)13.若关于的方程的一个根是,则方程的另一个根是________.14.一元二次方程化成一般式为________.15.实数a,b在数轴上对应点的位置如图所示,化简|b|+=______.16.确定一个的值为________,使一元二次方程无实数根.17.分式与的最简公分母是__________.18.已知:如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,若CE=8,则DF的长是________.三、解答题(共78分)19.(8分)如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm.(1)用关于x的代数式分别表示无盖纸盒的长和宽.(2)若纸盒的底面积为600cm2,求纸盒的高.(3)现根据(2)中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为279cm2的矩形图案A﹣F(如图3所示),每个图案的高为ycm,A图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于0.3cm,求x的取值范围和y的最小值.20.(8分)如图,在的网格中,网格线的公共点称为格点.已知格点、,如图所示线段上存在另外一个格点.(1)建立平面直角坐标系,并标注轴、轴、原点;(2)直接写出线段经过的另外一个格点的坐标:_____;(3)用无刻度的直尺画图,运用所学的三角形全等的知识画出经过格点的射线,使(保留画图痕迹),并直接写出点的坐标:_____.21.(8分)小芳和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小芳开始跑步中途改为步行.达到图书馆恰好用,小东骑自行车以的速度直接回家,两个离家的路程与各自离开出发地的时间之间的函数图象如图所示.(1)家与图书馆之间的路程为,小芳步行的速度为;(2)求小东离家的路程关于的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间22.(10分)先化简、再求值.,其中,.23.(10分)如图,在四边形中,平分,,是的中点,,过作于,并延长至点,使.

(1)求证:;(2)若,求证:四边形是菱形.24.(10分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=at(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?25.(12分)在一元二次方程x2-2ax+b=0中,若a2-b>0,则称a是该方程的中点值.(1)方程x2-8x+3=0的中点值是________;(2)已知x2-mx+n=0的中点值是3,其中一个根是2,求mn的值.26.如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE点F在AB上,且BF=DE(1)求证:四边形BDEF是平行四边形(2)线段AB,BF,AC之间具有怎样的数量关系?证明你所得到的结论

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.【题目详解】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故选:C.【题目点拨】本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.2、D【解题分析】

联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【题目详解】解:联立,解得:,∵交点在第一象限,∴,解得:a>1.故选D.【题目点拨】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.3、B【解题分析】

利用平行四边形性质得∠DAE=∠BEA,再利用角平分线性质证明△BAE是等腰三角形,得到BE=AB即可解题.【题目详解】∵四边形ABCD是平行四边形,∴AD=BC=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=3,∴CE=BC-BE=5-3=2,故选B.【题目点拨】本题考查了平行四边形的性质,等腰三角形的判定,属于简单题,熟悉平行线加角平分线得到等腰三角形这一常用解题模型是解题关键.4、C【解题分析】

如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,∵AC=BD,∴EH=FG=FG=EF,∴四边形EFGH是菱形.故选C.5、A【解题分析】

首先证明OE是△BCD的中位线,再根据平行四边形的性质即可解决问题.【题目详解】∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,∵BE=EC,∴OE=CD,∵OE=1,∴AB=CD=2,故答案为:A【题目点拨】此题考查平行四边形的性质,三角形中位线定理,解题关键在于求出OE是△BCD的中位线6、A【解题分析】

结合题意点A(3,y1),B(﹣1,y1)都在直线y=﹣x+n上,利用一次函数的增减性即可解决问题.【题目详解】∵直线y=﹣x+n,﹣<0,∴y随x的增大而减小,∵3>﹣1,∴y1<y1.故选:A.【题目点拨】本题考查一次函数图象上的点的特征,解题的关键是学会利用一次函数的增减性解决问题,属于中考常考题型.7、C【解题分析】

根据随机事件、不可能事件的定义和概率的性质判断各选项即可.【题目详解】A中,只有必然事件概率才是1,错误;B中,随机事件的概率p取值范围为:0<p<1,错误;C中,可能性很小的事件,是有可能发生的,正确;D中,不可能事件一定不发生,错误故选:C【题目点拨】本题考查事件的可能性,注意,任何事件的概率P一定在0至1之间.8、B【解题分析】

原式利用同分母分式的减法法则计算,约分即可得到结果.【题目详解】a2a-b-故选:B.【题目点拨】考查了分式的加减法,熟练掌握运算法则是解本题的关键.9、D【解题分析】

根据勾股定理列式计算即可.【题目详解】由题意可得:,AB+BC=15+9=1.故选D.【题目点拨】本题考查勾股定理的应用,关键在于熟练掌握勾股定理的公式.10、C【解题分析】

由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【题目详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>-1.

故选:C.【题目点拨】此题考查一次函数的图象,解一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.11、C【解题分析】

根据图像,利用中心对称即可解题.【题目详解】由题可知▱ABCD关于点O中心对称,∴点A和点C关于点O中心对称,∵A(2,3),∴C(-2,-3)故选C.【题目点拨】本题考查了中心对称,属于简单题,熟悉中心对称的点的坐标变换是解题关键.12、D【解题分析】

剩余的钱=原有的钱-用去的钱,可列出函数关系式.【题目详解】剩余的钱Q(元)与买这种笔记本的本数x之间的关系为:Q=50−8x.故选D【题目点拨】此题考查根据实际问题列一次函数关系式,解题关键在于列出方程二、填空题(每题4分,共24分)13、-2【解题分析】

根据一元二次方程根与系数的关系求解即可.【题目详解】设方程的另一个根为x1,∵方程的一个根是,∴x1+0=﹣2,即x1=﹣2.故答案为:﹣2.【题目点拨】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=﹣,x1x2=.14、【解题分析】

直接去括号,然后移项,即可得到答案.【题目详解】解:∵,∴,∴,故答案为:.【题目点拨】本题考查了一元二次方程的一般式,解题的关键是熟练掌握一元二次方程的一般式.15、﹣a【解题分析】

根据各点在数轴上的位置判断出a、b的符号及绝对值的大小,再根据有理数的加法法则和二次根式的性质,把原式进行化简即可.【题目详解】解:由数轴可知a<0<b,且|a|>|b|,则a+b<0,∴原式=b+|a+b|=b﹣(a+b)=b﹣a﹣b=﹣a,故答案为﹣a.【题目点拨】本题考查的是实数与数轴,二次根式的性质,以及有理数的加法法则,熟知实数与数轴上各点是一一对应关系及绝对值性质是解答此题的关键.16、【解题分析】

根据方程无实数根求出b的取值范围,再确定b的值即可.【题目详解】∵一元二次方程x2+2bx+1=0无实数根,∴4b2-4<0∴-1<b<1,因此,b可以取等满足条件的值.【题目点拨】此题考查了一元二次方程根的判别式的应用.此题难度不大,解题的关键是掌握当△<0时,一元二次方程没有实数根.17、【解题分析】

先把分母分解因式,再根据最简公分母定义即可求出.【题目详解】解:第一个分母可化为(x-1)(x+1)

第二个分母可化为x(x+1)

∴最简公分母是x(x-1)(x+1).故答案为:x(x-1)(x+1)【题目点拨】此题的关键是利用最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作最简公分母.18、1【解题分析】

根据直角三角形的性质得到AB=2CE=16,根据三角形中位线定理计算即可.【题目详解】∵∠ACB=90°,E是AB的中点,∴AB=2CE=16,∵D、F分别是AC、BC的中点,∴DF=AB=1.【题目点拨】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.三、解答题(共78分)19、(1)长,宽,(2)高为5cm,(3)x的取值范围为:,y的最小值为1.【解题分析】

根据长两个小正方形的长,宽两个小正方形的宽即可得到答案,根据面积长宽,列出关于x的一元二次方程,解之即可,设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,关于x的一元一次不等式,解之即可,根据面积长宽,列出y关于x的反比例函数,根据反比例函数的增减性求最值.【题目详解】根据题意得:长,宽,根据题意得:整理得:解得:舍去,,纸盒的高为5cm,设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,,,解得:,根据题意得:,,y随着x的增大而减小,当取到最大值时,y取到最小值,即当时,,x的取值范围为:,y的最小值为1.【题目点拨】本题考查二次函数的应用,一元二次方程的应用,解题的关键:(2)根据等量关系列出一元二次方程(3)根据数量关系列出不等式和反比例函数并利用反比例函数的增减性求最值.20、(1)如图所示见解析;(2)(5,4);(3).【解题分析】

(1)由可确定原点的位置,进而建立平面直角坐标系;(2)观察线段即可看出经过格点(5,4);(3)先把EA绕点E顺时针旋转90度找到格点A的对应格点F,再对比E、B的相对位置找到点F的对应格点D.【题目详解】(1)如图所示(2)E(5,4).如下图(3)如下图先把EA绕点E顺时针旋转90度找到格点A的对应格点F,再对比E、B的相对位置找到点F的对应格点D,故.此时点D的坐标是(3,5).【题目点拨】本题考查了网格问题及坐标系的有关知识,通过旋转得到垂直是解题的关键.21、(1)4000,100;(2),自变量的范围为;(3)两人相遇时间第8分钟.【解题分析】

(1)认真分析图象得到路程与速度数据;

(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;

(3)两人相遇实际上是函数图象求交点.【题目详解】(1)由图象可得:家与图书馆之间的路程为4000米,小芳步行的速度为(2)∵小东骑自行车以的速度直接回家∴他离家的路程自变量的范围为(3)由图像可知,两人相遇是在小玲改变速度之前解得两人相遇时间第8分钟.【题目点拨】本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.22、;【解题分析】

根据二次根式混合运算的法则化简,再将x,y的值代入计算即可.【题目详解】解:当,时【题目点拨】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.23、(1)见详解;(2)见详解【解题分析】

(1)欲证明AC2=CD•BC,只需推知△ACD∽△BCA即可;(2)利用“在直角三角形中,30度角所对的直角边等于斜边的一半”、“直角三角形斜边上的中线等于斜边的一半”推知四边形AKEC的四条边都相等,则四边形AKEC是菱形.【题目详解】证明:(1)∵AC平分∠BCD,∴∠DCA=∠ACB.又∵AC⊥AB,AD⊥AE,∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,∴∠DAC=∠EAB.又∵E是BC的中点,∴AE=BE,∴∠EAB=∠ABC,∴∠DAC=∠ABC,∴△ACD∽△BCA,∴,∴AC2=CD•BC;(2)证明:∵EF⊥AB,AC⊥AB,∴EF∥AC,又∵∠B=30°,∴AC=BC=EB=EC.又EF=EB,∴EF=AC,即AF=FE=EC=CA,∴四边形AFE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论