版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省湛江市二十三中学数学八下期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分 B.87.6分 C.88分 D.88.5分2.使有意义的取值范围是()A. B. C. D.3.已知直线l经过点A(4,0),B(0,3).则直线l的函数表达式为()A.y=﹣x+3 B.y=3x+4 C.y=4x+3 D.y=﹣3x+34.“学习强国”的英语“Learningpower”中,字母“n”出现的频率是()A.1 B. C. D.25.已知四边形是平行四边形,下列结论中不正确的是()A.当时,它是菱形 B.当时,它是菱形C.当时,它是矩形 D.当时,它是正方形6.《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.书中有下列问題:“今有邑方不知大小,各中开门,出北门八十步有木,出西门二百四十五步见木,问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,ME=80步,NF=245步,则正方形的边长为()A.280步 B.140步 C.300步 D.150步7.正方形的一条对角线之长为3,则此正方形的边长是()A. B.3 C. D.8.在中,斜边,则A.10 B.20 C.50 D.1009.下列计算中,①;②;③;④不正确的有()A.3个 B.2个 C.1个 D.4个10.甲、乙、丙、丁4对经过5轮选拔,平均分都相同,而方差依次为0.1、0.8、1.6、1.1.那么这4队中成绩最稳定的是()A.甲队 B.乙队 C.丙队 D.丁队二、填空题(每小题3分,共24分)11.有五个面的石块,每个面上分别标记1,2,3,4,5,现随机投掷100次,每个面落在地面上的次数如下表,估计石块标记3的面落在地面上的概率是______.石块的面12345频数172815162412.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=_____,对角线AC的长为_____.13.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.14.若点在轴上,则点的坐标为__________.15.有一组数据:.将这组数据改变为.设这组数据改变前后的方差分别是,则与的大小关系是______________.16.已知点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,则=___.17.若式子+有意义,则x的取值范围是____.18.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为_____.三、解答题(共66分)19.(10分)在正方形中,过点A引射线,交边于点H(H不与点D重合).通过翻折,使点B落在射线上的点G处,折痕交于E,连接E,G并延长交于F.(1)如图1,当点H与点C重合时,与的大小关系是_________;是____________三角形.(2)如图2,当点H为边上任意一点时(点H与点C不重合).连接,猜想与的大小关系,并证明你的结论.(3)在图2,当,时,求的面积.20.(6分)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?21.(6分)如图,在中,,请用尺规过点作直线,使其将分割成两个等腰三角形.(保留作图痕迹,不写作法.并把作图痕迹用黑色签字笔加黑).22.(8分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点.(1)该学习小组成员意外的发现图①中(三角板一边与CC重合),BN、CN、CD这三条线段之间存在一定的数量关系:CN2=BN2+CD2,请你对这名成员在图①中发现的结论说明理由;(2)在图③中(三角板一直角边与OD重合),试探究图③中BN、CN、CD这三条线段之间的数量关系,直接写出你的结论.(3)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.23.(8分)如图,AD∥BC,AC⊥AB,AB=3,AC=CD=1.(1)求BC的长;(1)求BD的长.24.(8分)在RtΔABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连接OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连接DE.(1)如图一,当点O在RtΔABC内部时.①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.25.(10分)如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,求证:BD=CE.26.(10分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.(1)若该城市某户6月份用水18吨,该户6月份水费是多少?(2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
根据加权平均数的计算方法进行计算即可得出答案.故选B.【题目详解】解:(分).【题目点拨】本题考查了加权平均数.理解“权”的含义是解题的关键.2、C【解题分析】
根据二次根式的非负性可得,解得:【题目详解】解:∵使有意义,∴解得故选C【题目点拨】本题考查二次根式有意义的条件,熟练掌握二次根式的非负性为解题关键3、A【解题分析】
根据已知条件可直接写出函数表达式,清楚y=kx+b中k和b与x轴y轴交点之间的关系即可求解【题目详解】解:∵A(4,0),B(0,3),∴直线l的解析式为:y=﹣x+3;故选:A.【题目点拨】此题主要考查一次函数的解析式,掌握k和b与直线与x轴y轴交点之间的关系是解题关键4、C【解题分析】
直接利用频率的定义分析得出答案.【题目详解】∵“学习强国”的英语“Learningpower”中,一共有13个字母,n有2个,
∴字母“n”出现的频率是:故选:C.【题目点拨】此题主要考查了频率的求法,正确把握定义是解题关键.5、D【解题分析】
根据特殊平行四边形的判定方法判断即可.【题目详解】解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.故答案为:D【题目点拨】本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.6、A【解题分析】
根据题意,可知Rt△AEN∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【题目详解】解:设正方形的边长为x步,∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴AM=1∴AM=AN,由题意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴MEAN而据题意知AM=AN,∴AM解得:AM=140,∴AD=2AM=280步,故选:A.【题目点拨】本题考查相似三角形的应用、数学常识、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.7、A【解题分析】
根据正方形的性质和勾股定理列方程求解即可.【题目详解】解:设正方形的边长为a,∵正方形的一条对角线之长为3,∴a2+a2=32,∴a=(负值已舍去),故选:A.【题目点拨】本题考查了正方形的性质和勾股定理,熟练掌握正方形的性质是解决问题的关键.8、D【解题分析】
根据勾股定理计算即可.【题目详解】在中,,,故选:D.【题目点拨】本题考查勾股定理,解题的关键是记住在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.9、A【解题分析】
直接利用积的乘方运算法则、单项式乘以单项式的法则、同底数幂的除法法则分别计算得出答案即可.【题目详解】解:①,故此选项错误,符合题意;②,故此选项错误,符合题意;③,故此选项正确,不符合题意;④,故此选项错误,符合题意;故选:A【题目点拨】此题主要考查了积的乘方、单项式乘以单项式、同底数幂的除法等运算知识,正确掌握运算法则是解题关键.10、A【解题分析】
先比较四个队的方差的大小,根据方差的性质解答即可.【题目详解】解:甲、乙、丙、丁方差依次为0.1、0.8、1.6、1.1,所以这4队中成绩最稳定的是甲,故选:A.【题目点拨】本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题(每小题3分,共24分)11、【解题分析】
根据表中的信息,先求出石块标记3的面落在地面上的频率,再用频率估计概率即可.【题目详解】解:石块标记3的面落在地面上的频率是=,
于是可以估计石块标记3的面落在地面上的概率是.故答案为:.【题目点拨】本题考查用频率来估计概率,在大量重复试验下频率的稳定值即是概率,属于基础题.12、120°10【解题分析】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AD∥BC,∵E是AB的中点,且DE⊥AB,∴AE=AD,∴sin∠ADE=,∴∠ADE=30°,∴∠DAE=60°,∵AD∥BC,∴∠ABC=180°−60°=120°;连接BD,交AC于点O,在菱形ABCD中,∠DAE=60°,∴∠CAE=30°,AB=10,∴OB=5,根据勾股定理可得:AO==,即AC=.故答案为:120°;.点睛:本题考查了菱形的性质、线段垂直平分线的性质、勾股定理等知识点,熟练掌握菱形的性质是解题的关键.由在菱形ABCD中,E是AB的中点,且DE⊥AB,可证得AE=AD,即可求得∠ADE=30°,继而求得答案;连接BD,交AC于点O,易得AC⊥BD,由勾股定理,即可求得答案.13、±1【解题分析】试题分析:根据坐标与图形得到三角形OAB的两边分别为|a|与5,然后根据三角形面积公式有:,解得a=1或a=-1,即a的值为±1.考点:1.三角形的面积;2.坐标与图形性质.14、【解题分析】
根据x轴上点的纵坐标等于1,可得m值,根据有理数的加法,可得点P的坐标.【题目详解】解:因为点P(m+1,m-2)在x轴上,
所以m-2=1,解得m=2,
当m=2时,点P的坐标为(3,1),
故答案为(3,1).【题目点拨】本题主要考查了点的坐标.坐标轴上点的坐标的特点:x轴上点的纵坐标为1,y轴上的横坐标为1.15、【解题分析】
设数据,,,,的平均数为,根据平均数的定义得出数据,,,,的平均数也为,再利用方差的定义分别求出,,进而比较大小.【题目详解】解:设数据,,,,的平均数为,则数据,,,,的平均数也为,,,.故答案为.【题目点拨】本题考查方差的定义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16、3【解题分析】
将点A(a,b)带入y=-x+3的图象与反比例函数中,即可求出a+b=3,ab=1,再根据=进行计算.【题目详解】∵点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,∴a+b=3,ab=1,∴==3.故答案是:3.【题目点拨】考查了一次函数和反比例函数上点的坐标特点,解题关键是利用图象上点的坐标满足函数的解析式.17、2≤x≤3【解题分析】
根据二次根式有意义的条件得到不等式组,解不等式组即可.【题目详解】根据题意得;解得:2≤x≤3故答案为:2≤x≤3【题目点拨】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数要大于等于0是关键.18、100(1+x)2=1【解题分析】分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.详解:设该果园水果产量的年平均增长率为x,根据题意,得:100(1+x)2=1,故答案为:100(1+x)2=1.点睛:本题考查了由实际问题抽象出一元二次方程;得到2013年产量的等量关系是解决本题的关键.三、解答题(共66分)19、(1);等腰直角.(2)详见解析;(3)【解题分析】
(1)连接AF,由正方形的性质及折叠的性质已知,由全等可知,CF=CE,结合可确定是等腰直角三角形;(2)连接AF,由正方形的性质及折叠的性质已知,即证;(3)设,依据题意及(2)的结论用含x的式子确定出的三边长,根据勾股定理求出x的值,即可求面积.【题目详解】解:(1)连接,∵四边形是正方形,∴,.由翻折可知,.∵,∴.…∴.又平分∴AC垂直平分EF∴∴是等腰直角三角形.故答案为:;等腰直角.(2)连接,∵四边形是正方形的对角线,∴,.由翻折可知,.∵,∴.…∴.…(3)设,则,.在中,,即.解得,即的长为.∴;…∴.…【题目点拨】本题考查了正方形的综合问题,涉及的知识点有正方形的性质、全等三角形的证明、勾股定理,灵活将正方形的性质与三角形的知识相结合是解题的关键.20、(1)14000,13200;(2)y=60x+1.(3)200.【解题分析】
试题分析:(1)方案一中,总费用y=8000+50x,代入x=120求得答案;由图可知方案二中,当x=120时,对应的购票总价为13200元;(2)分段考虑当0<x≤100时,当x≥100时,设出一次函数解析式,把其中两点的坐标代入即可求得相应的函数解析式;(3)由(1)(2)的解析式建立不等式,求得答案即可.试题解析:(1)若购买120张票时,方案一购票总价:y=8000+50x=14000元,方案二购票总价:y=13200元.(2)当0<x≤100时,设y=kx,代入(100,12000)得12000=100k,解得k=120,∴y=120x;当x>100时,设y=ax+b,代入(100,12000)、(120,13200)得,解得,∴y=60x+1.(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得8000+50x≤60x+1,解得x≥200,所以至少买200张票时选择方案一比较合算.【题目点拨】考点:一次函数的应用.21、见解析【解题分析】
作斜边AB的中垂线可以求得中点D,连接CD,根据直角三角形斜边上的中线等于斜边的一半,可得CD=AD=DB.【题目详解】解如图所示:,△ACD和△CDB即为所求.【题目点拨】此题主要考查了应用设计与作图,关键在于用中垂线求得中点和运用直角三角形中,斜边上的中线等于斜边的一半,把Rt△ABC分割成两个等腰三角形.22、(1)见解析;(1)BN1=NC1+CD1;(3)CM1+CN1=DM1+BN1,理由见解析.【解题分析】
(1)连结AN,由矩形知AO=CO,∠ABN=90°,AB=CD,结合ON⊥AC得NA=NC,由∠ABN=90°知NA1=BN1+AB1,从而得证;(1)连接DN,在Rt△CDN中,根据勾股定理可得:ND1=NC1+CD1,再根据ON垂直平分BD,可得:BN=DN,从而可证:BN1=NC1+CD1;(3)延长MO交AB于点E,可证:△BEO≌△DMO,NE=NM,在Rt△BEN和Rt△MCN中,根据勾股定理和对应边相等,可证:CN1+CM1=DM1+BN1.【题目详解】(1)证明:连结AN,∵矩形ABCD∴AO=CO,∠ABN=90°,AB=CD,∵ON⊥AC,∴NA=NC,∵∠ABN=90°,∴NA1=BN1+AB1,∴NC1=BN1+CD1.(1)如图1,连接DN.∵四边形ABCD是矩形,∴BO=DO,∠DCN=90°,∵ON⊥BD,∴NB=ND,∵∠DCN=90°,∴ND1=NC1+CD1,∴BN1=NC1+CD1.(3)CM1+CN1=DM1+BN1理由如下:延长MO交AB于E,∵矩形ABCD,∴BO=DO,∠ABC=∠DCB=90°,AB∥CD,∴∠ABO=∠CDO,∠BEO=∠DMO,∴△BEO≌△DMO(ASA),∴OE=OM,BE=DM,∵MO⊥EM,∴NE=NM,∵∠ABC=∠DCB=90°,∴NE1=BE1+BN1,NM1=CN1+CM1,∴CN1+CM1=BE1+BN1
,即CN1+CM1=DM1+BN1
.【题目点拨】此题是四边形综合题,主要考查了矩形的性质,勾股定理,全等三角形的判定与性质等知识点.23、(1)BC=;(1)BD=2【解题分析】
(1)在Rt△ABC中利用勾股定理即可求出BC的长;
(1)过点B作BE⊥DC交DC的延长线于点E.根据等边对等角的性质以及平行线的性质得出∠1=∠3,利用角平分线的性质得出AB=BE=3,在Rt△BCE中,根据勾股定理可得EC=1,则ED=4,在Rt△BDE中,利用勾股定理可得BD=2.【题目详解】(1)在Rt△ABC中,∵AC⊥AB,AB=3,AC=1,∴BC=;(1)过点B作BE⊥DC交DC的延长线于点E.∵AC=CD,∴∠1=∠ADC,又∵AD∥BC,∴∠3=∠ADC,∠1=∠1,∴∠1=∠3,又∵AC⊥AB,BE⊥DC,∴AB=BE=3,又由(1)BC=,在Rt△BCE中,由勾股定理可得EC=1;∴ED=1+1=4,在Rt△BDE中,由勾股定理可得BD=2.【题目点拨】本题考查了勾股定理,等腰三角形、平行线、角平分线的性质,掌握各定理是解题的关键.24、(1)①补全图形,如图一,见解析;②猜想DE=BC.证明见解析;(2)∠AED=30°或15°.【解题分析】
(1)①根据要求画出图形即可解决问题.②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.【题目详解】(1)①补全图形,如图一,②猜想DE=BC.如图,连接OD交BC于点F,连接AF在△BDF和△COF中,∠DBF=∠OCF∴△BDF≌ΔCOF∴DF=OF,BF=CF∴F分别为BC和DO的中点∵∠BAC=90°,F为BC的中点,∴AF=12∵OA=AE,F为BC的中点,∴AF=12∴DE=BC(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,∵AB=AC,∴AF垂直平分线段BC,∴MB=MC,∵∠OCB=30°,∠OBC=15°,∴∠MBC=∠MCB=30°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∠MBO=∠MBA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国耐高压油封行业投资前景及策略咨询研究报告
- 2024至2030年透明教学数控铣床项目投资价值分析报告
- 2024至2030年玻璃磨边机械金刚轮项目投资价值分析报告
- 2024至2030年中国均三甲苯行业投资前景及策略咨询研究报告
- 2024至2030年复合薯片生产线项目投资价值分析报告
- 2024至2030年中国上压式双阀分集水器行业投资前景及策略咨询研究报告
- 2024至2030年中国2吨成品油船行业投资前景及策略咨询研究报告
- 2024年轻轨用磁性锁项目可行性研究报告
- 2024年中国轮轨式混凝土搅拌输送车市场调查研究报告
- 2024年中国超细球型镍粉市场调查研究报告
- 校企携手共建产业学院合作协议书(参考范本)
- SSOP:卫生标准操作规程
- 废品回收合伙协议书
- 论语选读-04知其不可而为之教学课件
- T-TPPA 0005-2023 藿香正气方优质产品质量标准
- 城中村改造清产核资审计工作方案
- 智能检测技术与传感器PPT完整全套教学课件
- 罐头厂设备清单
- 河南省2022-2023学年普通高中学业水平考试解析与检测综合测试(二)英语试题( 含答案解析 )
- 2023阻塞性睡眠呼吸暂停与难治性高血压(全文)
- 湘教版八上音乐 都达尔和玛利亚 课件(共19张PPT)
评论
0/150
提交评论