宁夏固原市泾源县2024届八年级数学第二学期期末质量跟踪监视模拟试题含解析_第1页
宁夏固原市泾源县2024届八年级数学第二学期期末质量跟踪监视模拟试题含解析_第2页
宁夏固原市泾源县2024届八年级数学第二学期期末质量跟踪监视模拟试题含解析_第3页
宁夏固原市泾源县2024届八年级数学第二学期期末质量跟踪监视模拟试题含解析_第4页
宁夏固原市泾源县2024届八年级数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏固原市泾源县2024届八年级数学第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.慢车和快车先后从甲地出发沿直线道路匀速驶向乙地,快车比慢车晚出发0.5小时,行驶一段时间后,快车途中休息,休息后继续按原速行驶,到达乙地后停止.慢车和快车离甲地的距离y(千米)与慢车行驶时间x(小时)之间的函数关系如图所示.有以下说法:①快车速度是120千米/小时;②慢车到达乙地比快车到达乙地晚了0.5小时;③点C坐标(,100);④线段BC对应的函数表达式为y=120x﹣60(0.5≤x≤);其中正确的个数有()A.1 B.2 C.3 D.42.如图,下面不能判定四边形ABCD是平行四边形的是()A.B.C.D.3.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下列叙述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.点D是线段AC的中点 D.AD=BD=BC4.八(1)班班长统计2017年5~12月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制出如下折线统计图,下列说法不正确的是()A.众数是58 B.平均数是50C.中位数是58 D.每月阅读数量超过40本的有6个月5.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②m+n=3;③抛物线与x轴的另一个交点是(﹣1,0);④方程ax2+bx+c=3有两个相等的实数根;⑤当1≤x≤4时,有y2<y1,其中正确的是()A.①②③ B.①②④ C.①②⑤ D.②④⑤6.方差是表示一组数据的A.变化范围 B.平均水平 C.数据个数 D.波动大小7.如图,在四边形ABCD中,AB=1,则四边形ABCD的周长为()A.1 B.4 C.2 D.28.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()A.(3,1) B.(3,-1) C.(1,-3) D.(1,3)9.已知一个正多边形的每个外角等于,则这个正多边形是()A.正五边形 B.正六边形 C.正七边形 D.正八边形10.如图,菱形ABCD中,对角线AC等于,∠D=120°,则菱形ABCD的面积为()A. B.54 C.36 D.二、填空题(每小题3分,共24分)11.如图,正方形ABCD中,AB=6,E是CD的中点,将△ADE沿AE翻折至△AFE,连接CF,则CF的长度是_____.12.直线y=kx+b经过点A(-2,0)和y轴的正半轴上一点B.如果△ABO(O为坐标原点)的面积为2,则b的值是________.13.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.14.点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.15.甲乙两人在5次打靶测试中,甲成绩的平均数,方差,乙成绩的平均数,方差.教练根据甲、乙两人5次的成绩,选一名队员参加射击比赛,应选择__________.16.在平面直角坐标系xOy中,已知A(0,1),B(1,0),C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_____________.17.如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数的图象经过P,D两点,则AB的长是______.18.如图,将三角形纸片的一角折叠,使点B落在AC边上的F处,折痕为DE.已知AB=AC=3,BC=4,若以点E,F,C为顶点的三角形与△ABC相似,那么BE的长是_______.三、解答题(共66分)19.(10分)已知非零实数满足,求的值.20.(6分)计算:(1);(2)21.(6分)一次函数CD:与一次函数AB:,都经过点B(-1,4).(1)求两条直线的解析式;(2)求四边形ABDO的面积.22.(8分)在数学兴趣小组活动中,小明进行数学探究活动.将大小不相同的正方形ABCD与正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明;(2)如图2,小明将正方形ABCD绕点A转动,当点B恰好落在线段DG上时①猜想线段DG和BE的位置关系是.②若AD=2,AE=,求△ADG的面积.23.(8分)已知一次函数的图象经过点(3,4)与(-3,-8).(1)求这个一次函数的解析式;(2)求关于的不等式的解集.24.(8分)A、B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离A地的距离S(km)与时间t(h)的关系,结合图像回答下列问题:(1)表示乙离开A地的距离与时间关系的图像是________(填);甲的速度是__________km/h;乙的速度是________km/h.(2)甲出发后多少时间两人恰好相距5km?25.(10分)如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2.(2)直接写出点B1、B2坐标.(3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.26.(10分)某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:分组/分频数频率50≤x<6060.1260≤x<700.2870≤x<80160.3280≤x<90100.2090≤x≤10040.08(1)频数分布表中的;(2)将上面的频数分布直方图补充完整;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有人.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,本题得以解决.【题目详解】解:由图可得,①快车的速度为:(400﹣280)÷(4.5﹣3.5)=120千米/小时,故①正确,②慢车的速度为:280÷3.5=80千米/小时,慢车到达乙地比快车到达乙地晚了:400÷80﹣4.5=0.5小时,故②正确,③点C的纵坐标是:400﹣120×(4.5﹣2)=100,横坐标是:0.5+100÷120=,即点C的坐标为(,100),故③正确,④设线段BC对应的函数表达式为y=kx+b,∵点B(0.5,0),点C(,100),∴,得,即线段BC对应的函数表达式为y=120x﹣60(0.5≤x≤),故④正确,故选:D.【题目点拨】本题主要考查一次函数的应用,能够根据题意结合图象获取有效信息是解题的关键.2、C【解题分析】

根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形判断即可.【题目详解】根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选C.【题目点拨】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.3、C【解题分析】分析:由△ABC中,AB=AC,∠A=36°,可求得∠ABC与∠C的度数,又由AB的垂直平分线DE交AC于D,交AB于E,根据线段垂直平分线的性质,可证得AD=BD,继而可求得∠ABD,∠DBC的度数,则可得BD平分∠ABC;又可求得∠BDC的度数,则可证得AD=BD=BC;可求得△BDC的周长等于AB+BC.详解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=(180°-36°)÷2=72°,∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC-∠ABD=36°=∠ABD,∴BD平分∠ABC;故A正确;∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故D正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故B正确;∵AD=BD>CD,∴D不是AC的中点,故C错误.故选C.点睛:此题考查了线段垂直平分线的性质与等腰三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.4、B【解题分析】

根据众数的定义,可判断A;根据平均数的计算方法,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.【题目详解】A.出现次数最多的是58,众数是58,故A正确;B.平均数为:,故B错误;C.由小到大顺序排列数据28,36,42,58,58,70,75,83,中位数是=58,故C正确;D.由折线统计图看出每月阅读量超过40本的有6个月,故D正确;故选:B【题目点拨】此题考查折线统计图,算术平均数,中位数,众数,解题关键在于看懂图中数据.5、B【解题分析】

①利用对称轴x=1判定;

②把A(1,3)代入直线y2=mx+n即可判定;

③根据对称性判断;

④方程ax2+bx+c=3的根,就是图象上当y=3是所对应的x的值.⑤由图象得出,当1≤x≤4时,有y2≤y1;【题目详解】由抛物线对称轴为直线x=﹣,从而b=﹣2a,则2a+b=0故①正确;直线y2=mx+n过点A,把A(1,3)代入得m+n=3,故②正确;由抛物线对称性,与x轴的一个交点B(4,0),则另一个交点坐标为(2,0)故③错误;方程ax2+bx+c=3从函数角度可以看做是y=ax2+bx+c与直线y=3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点故方程ax2+bx+c=3有两个相等的实数根,因而④正确;由图象可知,当1≤x≤4时,有y2≤y1故当x=1或4时y2=y1故⑤错误.故选B.【题目点拨】本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:①通常2a+b的值都是利用抛物线的对称轴来确定;②抛物线与x轴的交点个数确定其△的值,即b2-4ac的值:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点;③知道对称轴和抛物线的一个交点,利用对称性可以求与x轴的另一交点.6、D【解题分析】

根据方差的意义进行求解即可得.【题目详解】方差是用来表示一组数据波动大小的量,故选D.【题目点拨】本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,通常用s2表示,其公式为S2=[(x1-)2+(x2-)2+…+(xn-)2](其中n是样本容量,表示平均数).方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、B【解题分析】

先判定四边形ABCD是平行四边形,再判断是菱形,即可求得答案.【题目详解】由图可知:AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形,∴四边形ABCD的周长=4×1=4,故选B.【题目点拨】本题考查了菱形的判定和性质,熟记菱形的性质定理是解此题的关键.8、B【解题分析】

首先连接AB交OC于点D,由四边形OACB是菱形,可得,,,易得点B的坐标是.【题目详解】连接AB交OC于点D,四边形OACB是菱形,,,,点B的坐标是.故选B.【题目点拨】此题考查了菱形的性质:菱形的对角线互相平分且垂直解此题注意数形结合思想的应用.9、B【解题分析】分析:根据多边形的外角和为360°即可得出答案.详解:360°÷60°=6,即六边形,故选B.点睛:本题主要考查的是正多边形的外角和定理,属于基础题型.多边形的内角和定理为(n-2)×180°,多边形的外角和为360°.10、D【解题分析】

如图,连接BD交AC于点O,根据菱形的性质和等腰三角形的性质可得AO的长、BO=DO、AC⊥BD、∠DAC=30°,然后利用30°角的直角三角形的性质和勾股定理可求出OD的长,即得BD的长,再根据菱形的面积=对角线乘积的一半计算即可.【题目详解】解:如图,连接BD交AC于点O,∵四边形ABCD是菱形,∴AD=CD,AO=CO=,BO=DO,AC⊥BD,∵∠ADC=120°,∴∠DAC=∠ACD=30°,∴AD=2DO,设DO=x,则AD=2x,在直角△ADO中,根据勾股定理,得,解得:x=3,(负值已舍去)∴BD=6,∴菱形ABCD的面积=.故选:D.【题目点拨】本题考查了菱形的性质、等腰三角形的性质、勾股定理和30°角的直角三角形的性质等知识,属于常见题型,熟练掌握上述基本知识是解题的关键.二、填空题(每小题3分,共24分)11、6【解题分析】

连接DF交AE于G,依据轴对称的性质以及三角形内角和定理,即可得到∠AGD=∠DFC=90°,再根据面积法即可得出DG=AD⋅DEAE=655,最后判定△ADG≌△DCF,即可得到CF【题目详解】解:如图,连接DF交AE于G,由折叠可得,DE=EF,又∵E是CD的中点,∴DE=CE=EF,∴∠EDF=∠EFD,∠ECF=∠EFC,又∵∠EDF+∠EFD+∠EFC+∠ECF=180°,∴∠EFD+∠EFC=90°,即∠DFC=90°,由折叠可得AE⊥DF,∴∠AGD=∠DFC=90°,又∵ED=3,AD=6,∴Rt△ADE中,AE=35又∵12∴DG=AD⋅DE∵∠DAG+∠ADG=∠CDF+∠ADG=90°,∴∠DAG=∠CDF,又∵AD=CD,∠AGD=∠DFC=90°,∴△ADG≌△DCF(AAS),∴CF=DG=65故答案为:65【题目点拨】本题主要考查了正方形的性质,折叠的性质以及全等三角形的判定与性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.12、1【解题分析】.而|OA|=1,故|OB|=1,又点B在y轴正半轴上,所以b=1.13、1【解题分析】

画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【题目详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,

在Rt△ABC中,

由勾股定理:x2=(8-x)2+22,

解得:x=,∴4x=1,

即菱形的最大周长为1cm.

故答案是:1.【题目点拨】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.14、2【解题分析】试题解析:∵点M(a,-5)与点N(-1,b)关于x轴对称,

∴a=-1.b=5,

∴a+b=-1+5=2.点睛:关于x轴、y轴对称的点的坐标特征:点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b).15、甲【解题分析】

根据根据方差的定义,方差越小数据越稳定,即可得出答案.【题目详解】解:因为甲、乙射击成绩的平均数一样,但甲的方差较小,说明甲的成绩比较稳定,因此推荐甲更合适.【题目点拨】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数。16、(-2,0)或(4,0)或(2,2)【解题分析】

分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.【题目详解】解:分三种情况:①AB为对角线时,点D的坐标为(-2,0);②BC为对角线时,点D的坐标为(4,0);

③AC为对角线时,点D的坐标为(2,2).

综上所述,点D的坐标可能是(-2,0)或(4,0)或(2,2).故答案为(-2,0)或(4,0)或(2,2).【题目点拨】本题考查平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解题的关键.17、2【解题分析】

设D(m,),则P(2m,),作PH⊥AB于H.根据正方形性质,构建方程可解决问题.【题目详解】解:设D(m,),则P(2m,),作PH⊥AB于H.故答案为:2【题目点拨】本题考核知识点:反比例函数的图象、正方形性质.解题关键点:利用参数构建方程解决问题.18、或1.【解题分析】

由于折叠前后的图形不变,要考虑△B′FC与△ABC相似时的对应情况,分两种情况讨论.【题目详解】解:根据△B′FC与△ABC相似时的对应关系,有两种情况:①△B′FC∽△ABC时,,又∵AB=AC=3,BC=4,B′F=BF,∴,解得BF=;②△B′CF∽△BCA时,,AB=AC=3,BC=4,B′F=CF,BF=B′F,而BF+FC=4,即1BF=4,解得BF=1.故BF的长度是或1.故答案为:或1.【题目点拨】本题考查相似三角形的性质.三、解答题(共66分)19、1【解题分析】

由题设知a≥3,化简原式得,根据非负数的性质先求出a,b的值,从而求得a+b的值.【题目详解】解:∵a≥3,

∴原等式可化为,∴b+2=0且(a-3)b2=0,

∴a=3,b=-2,

∴a+b=1.【题目点拨】本题考查了二次根式有意义的条件及非负数的性质,几个非负数的和为零,则每一个数都为零.20、(1)(2)【解题分析】

(1)按顺序分别进行二次根式的化简,绝对值的化简,然后再进行合并即可;(2)按顺序进行分母有理化、利用平方差公式计算,然后再按运算顺序进行计算即可.【题目详解】(1)原式;(2)原式.【题目点拨】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.21、(1)直线CD的解析式为:;直线AB的解析式为:;(2)四边形ABDO的面积为7.5.【解题分析】

(1)将B(﹣1,4)代入一次函数CD:与一次函数AB:,可以得到关于k、b的二元一次方程组,解方程组即可得到k、b的值,即可求出两条直线的解析式.(2)由图可知四边形ABDO不是规则的四边形,利用割补法得到,分别算出△ABC与△DOC的面积即可算出答案.【题目详解】解:(1)∵一次函数CD:与一次函数AB:,都经过点B(﹣1,4),∴将点B(﹣1,4)代入一次函数CD:与一次函数AB:,可得:解得:;∴直线CD的解析式为:;直线AB的解析式为:;(2)∵点A为直线AB与x轴的交点,令y=0得:解得:,∴A(﹣3,0);∵C为直线CD与x轴的交点,令y=0得:解得:,∴C(3,0);∵D为直线CD与y轴的交点,令x=0得y=3∴D(0,3);∴AC=6,OC=3,OD=3;由图可知;∴四边形ABDO的面积为7.5.【题目点拨】本题考查一次函数解析式的求法以及平面直角坐标系中图形面积的求法.会利用割补法求平面直角坐标系中图形面积是解题关键,在平面直角坐标系中求面积,一般以平行于坐标轴或在坐标轴上的边为底边,这样比较好算出图形的高.22、(1)详见解析;(2)①DG⊥BE;②1.【解题分析】

(1)利用正方形得到条件,判断出△ADG≌△ABE,根据全等三角形的性质即可得到结论;(2)①同理证明△ADG≌△ABE,根据全等三角形的性质即可得到结论;②分别计算DM、MG和AM的长,根据三角形面积可得结论.【题目详解】证明:(1)如图1,延长EB交DG于点H,∵四边形ABCD与四边形AEFG是正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE在△ADG与△ABE中,,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,DG=BE,∵△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,∵△DEH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,∴DG⊥BE;(2)①DG⊥BE,理由是:如图2,∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,,∴△ADG≌△ABE(SAS),∴∠ABE=∠ADG∴∠DBE=∠ABE+∠ABD=∠ABD+∠ADG=90°,∴DG⊥BE;故答案为DG⊥BE;②如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,∵BD是正方形ABCD的对角线,∴∠MDA=41°在Rt△AMD中,∵∠MDA=41°,AD=2,∴AM=DM=2,在Rt△AMG中,∵AM2+GM2=AG2∴GM==3,∵DG=DM+GM=2+3=1,∴S△ADG=DG•AM=×1×2=1.【题目点拨】此题是四边形的综合题,考查了旋转的性质和正方形的性质,用到的知识点是旋转的性质、全等三角形的判定,勾股定理和正方形的性质,难度适中,关键是根据题意画出辅助线,构造直角三角形.23、(1)y=2x−2;(2)x⩽1.【解题分析】

(1)将两点代入,运用待定系数法求解;(2)把y=6代入y=2x-2解得x=1,然后根据一次函数y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论