




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏宽口井中学石油希望学校2024届数学八年级第二学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,正方形在平面直角坐标系中的点和点的坐标为、,点在双曲线上.若正方形沿轴负方向平移个单位长度后,点恰好落在该双曲线上,则的值是()A.1 B.2 C.3 D.42.已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线长为()A. B.6 C.13 D.3.下列计算中,正确的是()A. B.C. D.4.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE5.已知:如图,菱形ABCD对角线AC与BD相交于点O,E为BC的中点,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm6.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A. B.C. D.7.如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5 B.6 C.8 D.108.下列函数中,表示y是x的正比例函数的是().A. B. C. D.9.如图,是一张平行四边形纸片ABCD(AB<BC),要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲、乙均正确 B.甲、乙均错误 C.甲正确,乙错误 D.甲错误,乙正确10.的值等于()A. B. C. D.11.关于x的一元二次方程有一个根为0,则m的值为()A.3 B.-3 C. D.012.下列多项式中,能用完全平方公式分解因式的是()A.x2﹣x+1 B.1﹣2xy+x2y2 C.m2﹣2m﹣1 D.二、填空题(每题4分,共24分)13.一组数据2,3,4,5,3的众数为__________.14.矩形中,对角线交于点,,则的长是__________.15.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是()A.1+ B.4+ C.4 D.-1+16.如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为_____.17.若关于x的一元二次方程x2﹣2x+4m=0有实数根,则m的取值范围是_____.18.化简:=_________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系xoy中,矩形OABC的顶点B坐标为(12,5),点D在CB边上从点C运动到点B,以AD为边作正方形ADEF,连BE、BF,在点D运动过程中,请探究以下问题:(1)△ABF的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;(2)若△BEF为等腰三角形,求此时正方形ADEF的边长;(3)设E(x,y),直接写出y关于x的函数关系式及自变量x的取值范围.20.(8分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:(1)△ACE≌△BCD;(2).21.(8分)如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=1.(1)连接BC,求BC的长;(2)求△BCD的面积.22.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?23.(10分)如图,在□ABCD中,∠ADB=90°,点E为AB边的中点,点F为CD边的中点.(1)求证:四边形DEBF是菱形;(2)当∠A等于多少度时,四边形DEBF是正方形?并说明你的理由.24.(10分)如图,已知中,,的垂直平分线交于,交于,若,,求的长.25.(12分)如图,中,.(1)请用尺规作图的方法在边上确定点,使得点到边的距离等于的长;(保留作用痕迹,不写作法)(2)在(1)的条件下,求证:.26.如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣1),B(﹣3,﹣3),C(﹣1,﹣3).将△ABC先向右平移3个单位,再向上平移4个单位得到△A1B1C1,在坐标系中画出△A1B1C1,并写出△A1B1C1各顶点的坐标.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于,根据全等三角形的判定和性质,可得到点坐标和点坐标,从而求得双曲线函数未知数和平移距离.【题目详解】过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于.,,,.又,,,点坐标为将点坐标为代入,可得=4.与同理,可得到,,点坐标为,正方形沿轴负方向平移个单位长度后,点坐标为将点坐标为代入,可得=2.故选B.【题目点拨】本题综合考查反比例函数中未知数的求解、全等三角形的性质与判定、图形平移等知识.涉及图形与坐标系结合的问题,要学会通过辅助线进行求解.2、D【解题分析】已知直角三角形的两直角边长分别为5和12,根据勾股定理求得斜边为13,根据直角三角形斜边上的中线等于斜边的一半,得此直角三角形斜边上的中线长为,故选D.3、D【解题分析】解:A,B,C都不是同类二次根式,不能合并,故错误;D.3﹣=(3﹣=,正确.故选D.4、B【解题分析】试题分析:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,∵CF∥BD,∴四边形BCFD是平行四边形,∴DF=BC,CF=BD,∴EF=DF-DE=BC-DE=BC=DE.故选B.点睛:本题考查了三角形中位线定理和平行四边形的判定与性质,得出四边形BCFD是平行四边形是解决此题的关键.5、C【解题分析】
根据菱形的性质,各边长都相等,对角线垂直平分,可得点O是AC的中点,证明EO为三角形ABC的中位线,计算可得.【题目详解】解:∵四边形是菱形,∴,,∵为的中点,∴是的中位线,∴,故选:C.【题目点拨】本题考查了菱形的性质,三角形中位线的性质,熟练掌握几何图形的性质是解题关键.6、A【解题分析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,故选A.7、A【解题分析】
已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.【题目详解】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=1.故选A.【题目点拨】本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.8、B【解题分析】
根据正比例函数的定义来判断:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.【题目详解】A、该函数不符合正比例函数的形式,故本选项错误.B、该函数是y关于x的正比例函数,故本选项正确.C、该函数是y关于x的一次函数,故本选项错误.D、该函数是y2关于x的函数,故本选项错误.故选B.【题目点拨】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.9、A【解题分析】
首先证明△AOE≌△COF(ASA),可得AE=CF,再根据一组对边平行且相等的四边形是平行四边形可判定判定四边形AECF是平行四边形,再由AC⊥EF,可根据对角线互相垂直的四边形是菱形判定出AECF是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.【题目详解】甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:A.【题目点拨】此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).10、A【解题分析】分析:根据平方与开平方互为逆运算,可得答案.详解:=,故选A.点睛:本题考查了算术平方根,注意一个正数的算术平方根只有一个.11、B【解题分析】
把x=1代入方程中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为1.【题目详解】把x=1代入方程中,得m2−9=1,解得m=−3或3,当m=3时,原方程二次项系数m−3=1,舍去,故选:B.【题目点拨】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念.12、B【解题分析】
利用完全平方公式的结构特征判断即可.【题目详解】解:选项中的4个多项式中,能用完全平方公式分解因式的是1-2xy+x2y2=(1-xy)2,
故选B.【题目点拨】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.二、填空题(每题4分,共24分)13、1.【解题分析】
众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【题目详解】本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.故答案为1.【题目点拨】众数是指一组数据中出现次数最多的数据.14、【解题分析】
根据矩形的对角线互相平分且相等可得OA=OC,然后由勾股定理列出方程求解得出BC的长和AC的长,然后根据矩形的对角线互相平分可得AO的长。【题目详解】解:如图,在矩形ABCD中,OA=OC,∵∠AOB=60°,∠ABC=90°∴∠BAC=30°∴AC=2BC设BC=x,则AC=2x∴解得x=,则AC=2x=2∴AO==.【题目点拨】本题考查了矩形的对角线互相平分且相等的性质和含30°的直角三角形的性质,以及勾股定理的应用,是基础题。15、A【解题分析】
根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.【题目详解】如图,∵点A坐标为(-2,2),∴k=-2×2=-4,∴反比例函数解析式为y=-,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合题意,舍去),∴t的值为.故选A.【题目点拨】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.16、8a.【解题分析】
由菱形的性质易得AC⊥BD,由此可得∠AOB=90°,结合点E是AB边上的中点可得AB=2OE=a,再结合菱形的四边相等即可求得菱形ABCD的周长为8a.【题目详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,∴∠AOB=90°,又∵点E为AB边上的中点,OE=a,∴AB=2OE=2a,∴菱形ABCD的周长=2a×4=8a.故答案为:8a.【题目点拨】“由菱形的性质得到AC⊥BD,从而得到∠AOB=90°,结合点E是AB边上的中点,得到AB=2OE=2a”是正确解答本题的关键.17、m≤【解题分析】
由关于x的一元二次方程x2﹣2x+4m=0有实数根,可知b2﹣4ac≥0,据此列不等式求解即可.【题目详解】解:由题意得,4-4×1×4m≥0解之得m≤故答案为m≤.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.18、【解题分析】
根据根式的性质即可化简.【题目详解】解:=【题目点拨】本题考查了根式的化简,属于简单题,熟悉根式的性质是解题关键.三、解答题(共78分)19、(1)不变,252,理由见解析;(2)55或52或525;(3)y=-x+22(5≤【解题分析】
(1)由“SAS”可证△ABD≌△FHA,可得HF=AB=5,即可求△ABF的面积;(2)分三种情况讨论,由等腰三角形的性质和勾股定理可求正方形ADEF的边长;(3)由全等三角形的性质,DH=AB=5,EH=DB,可得y=EH+5=DB+5,x=12-DB+DH=17-DB,即可求y关于x的函数关系式.【题目详解】解:(1)作FH⊥AB交AB延长线于H,∵正方形ADEF中,AD=AF,∠DAF=90°,∴∠DAH+∠FAH=90°.∵∠H=90°,∴∠FAH+∠AFH=90°,∴∠DAH=∠AFH,∵矩形OABC中,AB=5,∠ABD=90°,∴∠ABD=∠H∴△ABD≌△FHA,∴FH=AB=5,∴S△AEF(2)①当EB=EF时,作EG⊥CB∵正方形ADEF中,ED=EF,∴ED=EB,∴DB=2DG,同(1)理得△ABD≌△GDE,∴DG=AB=5,∴DB=10,∴AD=B②当EB=BF时,∠BEF=∠BFE,∵正方形ADEF中,ED=AF,∠DEF=∠AFE=90°,∴∠BED=∠BFA,∴△ABF≌△DBE,∴BD=AB=5,∵矩形OABC中,∠ABD=90°,∴AD=B③当FB=FE时,作FQ⊥AB,同理得BQ=AQ=52,BD=AQ=5∴AD=B(3)当5≤x≤12时,如图,
由(2)可知DH=AB=5,EH=DB,且E(x,y),∴y=EH+5=DB+5,x=12-DB+DH=17-DB,∴y=22-x,当12<x≤17时,如图,
同理可得:x=12-DB+5=17-DB,y=DB+5,∴y=22-x,综上所述:当5≤x≤17时,y=22-xy=-x+22(5≤x≤17).【题目点拨】本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.20、(1)证明见解析;(1)证明见解析.【解题分析】
(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EC,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(1)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD1+DB1=DE1.【题目详解】(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD.(1)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°.∵△ACE≌△BCD,∴∠B=∠CAE=45°,AE=BD,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD1+AE1=DE1,∴AD1+DB1=DE1.【题目点拨】本题考查了三角形全等的判定方法,及勾股定理的运用.21、(1)BC=15;(2)S△BCD=2.【解题分析】
(1)根据勾股定理可求得BC的长.
(2)根据勾股定理的逆定理可得到△BCD也是直角三角形,根据三角形的面积即可得到结论.【题目详解】(1)∵∠A=90°,AB=9,AC=12∴BC==15,(2)∵BC=15,BD=8,CD=1∴BC2+BD2=CD2∴△BCD是直角三角形∴S△BCD=×15×8=2.【题目点拨】本题考查了勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理,通过作辅助线证明三角形是直角三角形是解决问题的关键.22、(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.【解题分析】
(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【题目详解】(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.考点:1.分式方程的应用;2.一元一次不等式的应用.23、(1)见解析;(2)45°【解题分析】试题分析:(1)根据平行四边形的性质得出DC∥AB,DC=AB,求出DF∥BE,DF=BE,得出四边形DEBF是平行四边形,求出DE=BE,根据菱形的判定得出即可;(2)求出AD=BD,根据等腰三角形的性质得出DE⊥AB,根据正方形的判定得出即可.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB.∵点E为AB边的中点,点F为CD边的中点,∴DF∥BE,DF=BE,∴四边形DEBF是平行四边形.∵∠ADB=90°,点E为AB边的中点,∴DE=BE=AE,∴四边形DEBF是菱形;(2)当∠A=45°,四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版材料研发项目投资与合作合同模板
- 二零二五年度个人租赁公寓物业服务合同
- 2025年度高端宠物寄养服务合同书
- 二零二五版供水工程安全监理合同
- 二零二五年度第十一十二章行政合同纠纷调解协议书范本
- 二零二五年度房屋全款交易贷款担保合同
- 二零二五年度仓储物流返租收益保底合同
- 二零二五年度云计算平台建设与技术支持合同
- 2025版活体动物市场交易规范合同
- 二零二五年度交通事故私了赔偿合同模板
- 绿化技师考试试题及答案
- 2025雷电防护装置检测部位及检测点确认技术规范
- 2025年血液透析室培训试题(附答案)
- 数字普惠金融对城乡收入差距的影响机制与区域差异研究
- 云端漫步云端飞车创新创业项目商业计划书
- 2025年中国工程质量检测行业市场前景预测及投资价值评估分析报告
- 宁夏资环技术有限公司招聘考试真题2024
- 高职院校与企业合作中的资源整合与共享
- 2025至2030中国烫金箔行业发展趋势分析与未来投资战略咨询研究报告
- 2025云南省初中学业水平考试数学
- 税务稽查程序培训
评论
0/150
提交评论