河北省临城县2024届八年级数学第二学期期末学业质量监测试题含解析_第1页
河北省临城县2024届八年级数学第二学期期末学业质量监测试题含解析_第2页
河北省临城县2024届八年级数学第二学期期末学业质量监测试题含解析_第3页
河北省临城县2024届八年级数学第二学期期末学业质量监测试题含解析_第4页
河北省临城县2024届八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省临城县2024届八年级数学第二学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列平面图形中,既是轴对称图形又是中心对称图形的是(

)A. B. C. D.2.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC3.二次根式有意义的条件是()A.x>3 B.x>-3 C.x≥3 D.x≥-34.已知点,、,是直线上的两点,下列判断中正确的是()A. B. C.当时, D.当时,5.一组数据3,4,4,5,5,5,6,6,7众数是()A.4 B.5 C.6 D.76.已知关于的一元二次方程有两个实数根,.则代数式的值为()A.10 B.2 C. D.7.有一组数据:3,3,5,6,1.这组数据的众数为()A.3 B.5 C.6 D.18.若分式的值为0,则的值等于A.0 B.3 C.-3 D.39.在平面直角坐标系中,已知点A(O,1),B(1,2),点P在轴上运动,当点P到A、B两点的距离之差的绝对值最大时,该点记为点P1,当点P到A、B两点的距离之和最小时,该点记为点P2,以P1P2为边长的正方形的面积为A.1 B. C. D.510.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线,看是否互相平分B.测量两组对边,看是否分别相等C.测量对角线,看是否相等D.测量对角线的交点到四个顶点的距离,看是否都相等11.下列函数中,是一次函数的是()A. B. C. D.12.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形二、填空题(每题4分,共24分)13.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.14.已知:线段求作:菱形,使得且.以下是小丁同学的作法:①作线段;②分别以点,为圆心,线段的长为半径作弧,两弧交于点;③再分别以点,为圆心,线段的长为半径作弧,两弧交于点;④连接,,.则四边形即为所求作的菱形.(如图)老师说小丁同学的作图正确.则小丁同学的作图依据是:_______.15.求值:=____.16.如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A=度.17.如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:______,使四边形ABCD为平行四边形(不添加任何辅助线).18.已知一组数据1,4,a,3,5,若它的平均数是3,则这组数据的中位数是________.三、解答题(共78分)19.(8分)如图,在正方形ABCD中,E、F是对角线BD上两点,将绕点A顺时针旋转后,得到,连接EM,AE,且使得.(1)求证:;(2)求证:.20.(8分)如图,已知四边形ABCD是平行四边形,AE⊥BC,AF⊥DC,垂足分别是E,F,并且BE=DF,求证;四边形ABCD是菱形.21.(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.(1)求的值;(2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.22.(10分)已知关于x的一元二次方程(m为常数)(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m的值及方程的另一个根.23.(10分)ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.24.(10分)选用适当的方法解下列方程:(1)(x+2)2=9(2)2x(x﹣3)+x=325.(12分)解方程:=-.26.我市遗爱湖公园内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积.经技术人员测量,∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

根据轴对称图形与中心对称图形的概念求解.【题目详解】A不是轴对称图形,是中心对称图形;B是轴对称图形,也是中心对称图形;C和D是轴对称图形,不是中心对称图形.故选B.【题目点拨】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2、B【解题分析】分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.详解:添加的条件是AC=BD.理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.故选B.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.3、D【解题分析】

根据二次根式被开方数大于等于0即可得出答案.【题目详解】根据被开方数大于等于0得,有意义的条件是解得:故选:D【题目点拨】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.4、D【解题分析】

根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.【题目详解】解:一次函数上的点随的增大而减小,又点,、,是直线上的两点,若,则,故选:.【题目点拨】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.5、B【解题分析】

先把数据按大小排列,然后根据众数的定义可得到答案.【题目详解】数据按从小到大排列:3,4,4,5,5,5,6,6,7,数据5出现3次,次数最多,所以众数是5.故选B.【题目点拨】此题考查众数,难度不大6、B【解题分析】

先由根与系数的关系得到关于的方程组,代入直接求值即可.【题目详解】解:因为有两个实数根,,所以所以,解得:,所以,故选B.【题目点拨】本题考查的是一元二次方程的根与系数的关系,方程组的解法及代数式的求值,掌握相关的知识点是解题关键.7、A【解题分析】

根据众数的概念进行求解即可得答案.【题目详解】解:这组数据中3出现的次数最多,出现了2次,则众数为3,故选A.【题目点拨】本题考查了众数的概念,熟练掌握“一组数据中出现次数最多的数据叫做众数”是解题的关键.8、C【解题分析】

根据分式的值为零,则分子为零分母不为零,进而得出答案.【题目详解】解:∵分式的值为0,∴x2−9=0,x−1≠0,解得:x=−1.故选:C.【题目点拨】此题主要考查了分式的值为零的条件,正确记忆分子与分母的关系是解题关键.9、C【解题分析】

由三角形两边之差小于第三边可知,当A、B、P三点不共线时,|PA-PB|<AB,又因为A(0,1),B(1,2)两点都在x轴同侧,则当A、B、P三点共线时,|PA-PB|=AB,即|PA-PB|≤AB,所以当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直线AB的解析式,再令y=0,求出x的值即可得到点P1的坐标;点A关于x轴的对称点为A',求得直线A'B的解析式,令y=0,即可得到点P2的坐标,进而得到以P1P2为边长的正方形的面积.【题目详解】由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.设直线AB的解析式为y=kx+b,∵A(0,1),B(1,2),∴,解得,∴y=x+1,令y=0,则0=x+1,解得x=-1.∴点P1的坐标是(-1,0).∵点A关于x轴的对称点A'的坐标为(0,-1),设直线A'B的解析式为y=k'x+b',∵A'(0,-1),B(1,2),,解得,∴y=3x−1,令y=0,则0=3x−1,解得x=,∴点P2的坐标是(,0).∴以P1P2为边长的正方形的面积为(+1)2=,【题目点拨】本题考查了最短距离问题,待定系数法求一次函数的解析式及x轴上点的坐标特征.根据三角形两边之差小于第三边得出当点P在直线AB上时,P点到A、B两点距离之差的绝对值最大,是解题的关键.10、D【解题分析】

根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【题目详解】解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;B、两组对边是否分别相等,能判定平行四边形,故本选项错误;C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.故选:D.【题目点拨】本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.11、D【解题分析】

根据一次函数的定义进行判断即可.【题目详解】A.该函数属于正比例函数,故本选项错误;B.该函数属于反比例比例函数,故本选项错误;C.该函数属于二次函数,故本选项错误;D.该函数属于一次函数,故本选项正确;故选:D.【题目点拨】此题考查一次函数,难度不大12、B【解题分析】试题分析:利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.考点:命题与定理.二、填空题(每题4分,共24分)13、50°或90°【解题分析】分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.详解:当AP⊥ON时,∠APO=90°,则∠A=50°,当PA⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为50°或90°.点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.14、三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形【解题分析】

利用作法和等边三角形的判定与性质得到∠A=60°,然后根据菱形的判定方法得到四边形ABCD为菱形.【题目详解】解:由作法得AD=BD=AB=a,CD=CB=a,∴△ABD为等边三角形,AB=BC=CD=AD,∴∠A=60°,四边形ABCD为菱形,故答案为:三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形.【题目点拨】本题考查了尺规作图,及菱形的判定,熟练掌握尺规作图,及菱形的判定知识是解决本题的关键.15、.【解题分析】

根据二次根式的性质,求出算术平方根即可.【题目详解】解:原式=.故答案为:.【题目点拨】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.16、60【解题分析】试题分析:根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°-∠B-∠ACB=60°.考点:线段垂直平分线的性质17、AD=BC.【解题分析】

直接利用平行四边形的判定方法直接得出答案.【题目详解】当AD∥BC,AD=BC时,四边形ABCD为平行四边形.故答案是AD=BC(答案不唯一).18、3【解题分析】

根据求平均数的方法先求出a,再把这组数从小到大排列,3处于中间位置,则中位数为3.【题目详解】a=3×5-(1+4+3+5)=2,把这组数从小到大排列:1,2,3,4,5,

3处于中间位置,则中位数为3.故答案为:3.【题目点拨】本题考查中位数与平均数,解题关键在于求出a.三、解答题(共78分)19、(1)见解析;(2)见解析.【解题分析】

(1)直接利用旋转的性质证明△AME≌△AFE(SAS),即可得出答案;(2)利用(1)中所证,再结合勾股定理即可得出答案.【题目详解】证明:(1)∵将绕点A顺时针旋转90°后,得到,,,,,,,,在△AME和中,,;(2)由(1)得:,在中,,又∵,.【题目点拨】此题主要考查了旋转的性质、全等三角形的判定和性质以及勾股定理等知识,正确得出△AME≌△AFE是解题关键.20、见解析【解题分析】

平行四边形的对角相等,得∠B=∠D,结合AE⊥BC,AF⊥DC和BE=DF,由角边角定理证明△ABE全等△ADF,再由全等三角形对应边相等得DA=AB,最后根据邻边相等的平行四边形是菱形判定

四边形ABCD是菱形.【题目详解】∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥DC∴∠AEB=∠AFD=90°又∵BE=DF,∴△ABE≌△ADF(AAS)∴DA=AB,∴平行四边形ABCD是菱形【题目点拨】此题主要考查菱形的判定,解题的关键是熟知全等三角形的判定与性质及菱形的判定定理.21、(1).(2)①判断:.理由见解析;②或.【解题分析】

(1)利用代点法可以求出参数;(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;②根据①中的情况,可知或再结合图像可以确定的取值范围;【题目详解】解:(1)∵函数的图象经过点,∴将点代入,即,得:∵直线与轴交于点,∴将点代入,即,得:(2)①判断:.理由如下:当时,点P的坐标为,如图所示:∴点C的坐标为,点D的坐标为∴,.∴.②由①可知当时所以由图像可知,当直线往下平移的时也符合题意,即,得;当时,点P的坐标为∴点C的坐标为,点D的坐标为∴,∴当时,即,也符合题意,所以的取值范围为:或.【题目点拨】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.22、(1)见解析;(2)即m的值为0,方程的另一个根为0.【解题分析】

(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m2+4>0,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t,利用根与系数的关系得到2+t=,2t=m,最终解出关于t和m的方程组即可.【题目详解】(1)证明:△=(m+2)2−4×1⋅m=m2+4,∵无论m为何值时m2≥0,∴m2+4≥4>0,即△>0,所以无论m为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t,根据题意得2+t=,2t=m,解得t=0,所以m=0,即m的值为0,方程的另一个根为0.【题目点拨】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.23、(1)见解析;(2)1【解题分析】

(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)由平行线和角平分线定义得出∠DFA=∠DAF,证出AD=DF=5,由勾股定理求出DE==4,即可得出矩形BFDE的面积.【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵AB∥CD,∴∠BAF=∠DFA,∵AF平分∠BAD,∴∠BAF=∠DAF,∴∠DFA=∠DAF,∴AD=DF=5,∵DE⊥AB,∴∠AED=9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论