版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市爱知中学2024届数学八年级第二学期期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.当时,一次函数的图象大致是()A. B.C. D.2.当分式有意义时,字母x应满足()A.x≠1 B.x=0 C.x≠-1 D.x≠33.下列因式分解正确的是()A. B.C. D.4.如图,在三角形ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=2CD,BC=6cm,则点D到A.4cm B.3cm C.2cm D.1cm5.如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A.(1,1) B. C. D.6.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16- B.-12+ C.8- D.4-7.芝麻的用途广泛,经测算,一粒芝麻约有0.00000201千克.数据0.00000201用科学记数法表示为()A. B. C. D.8.下列方程,是一元二次方程的是()①,②,③,④A.①② B.①②④ C.①③④ D.②④9.如图①,正方形中,点以每秒2cm的速度从点出发,沿的路径运动,到点停止.过点作与边(或边)交于点的长度与点的运动时间(秒)的函数图象如图②所示.当点运动3秒时,的面积为()A. B. C. D.10.如图,菱形中,对角线、相交于点,、分别是边、的中点,连接、、,则下列叙述正确的是()A.和都是等边三角形B.四边形和四边形都是菱形C.四边形与四边形是位似图形D.且二、填空题(每小题3分,共24分)11.已知平行四边形ABCD中,∠B+∠D=270°,则∠C=________.12.如图,在五边形中,,和的平分线交于点,则的度数为__________°.13.已知平行四边形的周长是24,相邻两边的长度相差4,那么相邻两边的长分别是_____.14.计算:3-2=;15.如图是棱长为4cm的立方体木块,一只蚂蚁现在A点,若在B点处有一块糖,它想尽快吃到这块糖,则蚂蚁沿正方体表面爬行的最短路程是______cm.16.在一列数2,3,3,5,7中,他们的平均数为__________.17.平面直角坐标系中,A是y=﹣(x>0)图象上一点,B是x轴正半轴上一点,点C的坐标为(0,﹣2),若点D与A,B,C构成的四边形为正方形,则点D的坐标_____.18.菱形ABCD的两条对角线长分别为6和4,则菱形ABCD的面积是_____.三、解答题(共66分)19.(10分)某公司销售员的奖励工资由两部分组成:基本工资,每人每月2400元;奖励工资,每销售一件产品,奖励10元.(1)设某销售员月销售产品件,他应得的工资为元,求与之间的函数关系式;(2)若该销售员某月工资为3600元,他这个月销价了多少件产品?(3)要使月工资超过4200元,该月的销售量应当超过多少件?20.(6分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=2,AC=2,求AB、CD的长.21.(6分)如图,四边形中,,平分,交于.(1)求证:四边形是菱形;(2)若点是的中点,试判断的形状,并说明理由.22.(8分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.23.(8分)解下列不等式(组),并将其解集分别表示在数轴上.(1);(2)24.(8分)(1)如图,已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.(2)如图,用3个全等的菱形构成活动衣帽架,顶点A、E、F、C、G、H是上、下两排挂钩,根据需要可以改变挂钩之间的距离(比如AC两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间的距离为24厘米,并在点B、M处固定,则B、M之间的距离是多少?25.(10分)如图,直线分别与轴交于点,与轴交于点,与双曲线交于点.(1)求与的值;(2)已知是轴上的一点,当时,求点的坐标.26.(10分)如图,在△ABC中,AD平分∠BAC,AB+BD=AC,∠BAC=75°,则∠C的度数为____.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
根据k=1>0可得图象的斜率,根据b<0可得直线与y轴的交点在x轴的下方.【题目详解】解:∵k=1>0,∴y随x的增大而增大,又∵b<0,∴函数图象与y轴交于负半轴.故选A.【题目点拨】本题主要考查一次函数的图象性质,当=kx+b(k,b为常数,k≠0)时:当k>0,b>0,这时此函数的图象经过一,二,三象限;当k>0,b<0,这时此函数的图象经过一,三,四象限;当k<0,b>0,这时此函数的图象经过一,二,四象限;当k<0,b<0,这时此函数的图象经过二,三,四象限.2、A【解题分析】
分式有意义,分母不为零.【题目详解】解:当,即时,分式有意义;故选:A.【题目点拨】本题考查了分式有意义的条件.(1)若分式无意义,则分母为零;(2)若分式有意义,则分母不为零.3、C【解题分析】
根据因式分解的定义及方法逐项分析即可.【题目详解】A.,故不正确;B.在实数范围内不能因式分解,故不正确;C.,正确;D.的右边不是积的形式,故不正确;故选C.【题目点拨】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.4、C【解题分析】
如图,在△ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=1CD,BC=9cm,则点D到AB的距离.【题目详解】如图,过点D作DE⊥AB于E,
∵BD:DC=1:1,BC=6,
∴DC=11+2×6=1,
∵AD平分∠BAC,∠C=90∘,
∴DE=DC=1.
故选:C.【题目点拨】本题考查角平分线的性质和点到直线的距离,解题的关键是掌握角平分线的性质.5、B【解题分析】
首先求出AB的长,进而得出EO的长,再利用含30度角的直角三角形的性质以及勾股定理进行求解即可.【题目详解】过E作EM⊥AC,则∠EMO=90°,∵四边形ABCD是菱形,∴AB=CD=BC=AD,AC⊥DB,∠BAO=∠BAD,∵∠BAD=60°,∴∠BAO=30°,∵AC⊥DB,∴∠BOA=90°,∵E是AB的中点,∴EO=EA=EB=AB,∵菱形ABCD的周长为16,∴AB=4,∴EO=2,∵EO=AE,∴∠EOA=∠EAO=30°,又∵∠EMO=90°,∴EM=EO=1,∴OM=∴则点E的坐标为:(,1),故选B.【题目点拨】本题考查了菱形的性质,坐标与图形,勾股定理,含30度角的直角三角形的性质,直角三角形斜边中线的性质,熟练掌握相关知识是解题的关键.6、B【解题分析】
根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【题目详解】∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为cm,cm,∴AB=4cm,BC=cm,∴空白部分的面积=×4−12−16=+16−12−16=cm2.故选B.【题目点拨】此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长.7、C【解题分析】
根据科学记数法的概念:科学记数法是一种记数的方法。把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,n为整数),即可解题.【题目详解】解:根据科学记数法的记法,可得0.00000201=故答案为C.【题目点拨】此题主要考查科学记数法,熟练运用,即可解题.8、D【解题分析】
只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.结合题意进行分析即可得到答案.【题目详解】①,含有两个未知数,不是一元二次方程;②,是一元二次方程;③不是一元二次方程;④,是一元二次方程;由此知②④是一元二次方程,故选D.【题目点拨】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.9、B【解题分析】
由图②知,运动2秒时,,距离最长,再根据运动速度乘以时间求得路程,可得点P的位置,根据线段的和差,可得CP的长,最后由即可求得答案.【题目详解】由图②知,运动2秒时,,的值最大,此时,点P与点B重合,则,∵四边形为正方形,则,∴,由题可得:点P运动3秒时,则P点运动了6cm,
此时,点P在BC上,如图:
∴cm,∴点P为BC的中点,∵PQ∥BD,∴点Q为DC的中点,∴.故选:B.【题目点拨】本题考查了动点问题的函数图象以及平行线的性质、正方形的性质、三角形中位线定理,由图②知,运动2秒时,,求得正方形的边长是解题的关键.10、C【解题分析】
根据菱形的性质及直角三角形的性质即可判断.【题目详解】∵、分别是边、的中点,AC⊥BD,∴MO=AM=BM=AB=NO,∴和都是等腰三角形,A错误;∵MN=BD=BO=DO,∴四边形和四边形都是平行四边形,B错误;由AM=AB,AO=AC,AN=AD,∴四边形与四边形是位似图形,正确;∵、O分别是边、AC的中点∴,但是不一定等于CO,故D错误.故选C【题目点拨】此题主要考查菱形的性质,解题的关键是熟知中位线定理与直角三角形的性质.二、填空题(每小题3分,共24分)11、45°【解题分析】
试题解析:∵四边形ABCD为平行四边形,∴AD∥BC,∠B=∠D,且故答案为点睛:平行四边形的对角相等,邻角互补.12、【解题分析】
先根据五边形的内角和公式及求出∠ABC+∠BCD的度数,再利用角平分线的定义求出∠OBC+∠OCB的值,然后利用三角形内角和公式即可求出∠BOC的值.【题目详解】∵,∴∠ABC+∠BCD=540°-330°=210°.∵和的平分线交于点,∴∠OBC+∠OCB=(∠ABC+∠BCD)=×210°=105°,∴∠BOC=180°-105°=75°.故答案为:75.【题目点拨】本题考查了多边形的内角和公式,角平分线的定义,熟练掌握多边形的内角和公式(n-2)×180°是解答本题的关键.13、4和1【解题分析】
设短边为x,则长边为x+4,再利用周长为24作等量关系,即可列方程求解.【题目详解】∵平行四边形周长为24,∴相邻两边的和为12,∵相邻两边的差是4,设短边为x,则长边为x+4∴x+4+x=12∴x=4∴两边的长分别为:4,1.故答案为:4和1;【题目点拨】主要考查了平行四边形的性质,即平行四边形的对边相等这一性质,并建立适当的方程是解题的关键.14、【解题分析】根据负整数指数为正整数指数的倒数计算.解:3-2=.故答案为.15、【解题分析】
根据“两点之间线段最短”,将点A和点B所在的各面展开,展开为矩形,AB为矩形的对角线的长即为蚂蚁沿正方体表面爬行的最短距离,再由勾股定理求解即可.【题目详解】将点A和点B所在的面展开为矩形,AB为矩形对角线的长,∵矩形的长和宽分别为8cm和4cm,∴AB==cm.故蚂蚁沿正方体的最短路程是cm.故答案为:.【题目点拨】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.16、1【解题分析】
直接利用算术平均数的定义列式计算可得.【题目详解】解:这组数据的平均数为=1,故答案为:1.【题目点拨】本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.17、(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).【解题分析】
首先依据题意画图图形,对于图1和图2依据正方形的对称性可得到点D的坐标,对于图3可证明△AEC≌△BFA,从而可得到AE=BF,然后由反比例函数的解析式可求得点A的坐标,然后可得到点D的坐标.【题目详解】如图1所示:当CD为对角线时.∵OC=2,AB=CD=4,∴D(4,﹣2).如图2所示:∵OC=2,BD=AC=4,∴D(2,﹣4).如图3所示:过点A作AE⊥y轴,BF⊥AE,则△AEC≌△BFA.∴AE=BF.设点A的横纵坐标互为相反数,∴A(2,﹣2)∴D(2﹣2,2﹣2).综上所述,点D的坐标为(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).故答案为:(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).【题目点拨】本题主要考查的是正方形的性质,反比例函数的性质,依据题意画出复合题意得图形是解题的关键.18、1【解题分析】
根据菱形的面积等于对角线积的一半,即可求得其面积.【题目详解】∵菱形ABCD的两条对角线长分别为6和4,∴其面积为4×6=1.故答案为:1.【题目点拨】此题考查了菱形的性质.注意熟记①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度).三、解答题(共66分)19、(1);(2)他这个月销售了120件产品;(3)要使月工资超过4200元,该月的销售量应当超过180件.【解题分析】
(1)根据销售员的奖励工资由两部分组成,即可得到y与x之间的函数关系式;(2)根据销售员某月工资为3600元,列方程求解即可;(3)根据月工资超过4200元,列不等式求解即可.【题目详解】(1)由题可得,与之间的函数关系式是:(2)令,则,解得:,∴他这个月销售了120件产品;(3)由得,∴要使月工资超过4200元,该月的销售量应当超过180件【题目点拨】此题考查了一次函数的应用,关键是读懂题意得出y与x之间的函数关系式,进而利用等量关系以及不等量关系分别求解.20、AB=4,CD=.【解题分析】
根据勾股定理可求出AB的长度,然后利用三角形的面积即可求出CD的长度.【题目详解】解:在Rt△ABC中,∠ACB=90°根据勾股定理,得AB2=AC2+BC2=16,∴AB=4,又CD⊥AB∴AB•CD=AC•BC∴4CD=2×2即CD=.【题目点拨】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.21、(1)详见解析;(2)是直角三角形,理由详见解析.【解题分析】
(1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.【题目详解】(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴平行四边形AECD是菱形;(2)直角三角形,理由如下:∵四边形AECD是菱形,∴AE=EC,∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.【题目点拨】本题考查了平行四边形的判定,菱形的判定与性质,直角三角形的判定,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.22、(1)证明见解析;(2)【解题分析】
(1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论;(2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC=60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到,再由MN=BM=1,得到BN的长.【题目详解】(1)在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,且MN=AD,在Rt△ABC中,∵M是AC的中点,∴BM=AC,又∵AC=AD,∴MN=BM;(2)∵∠BAD=60°且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴,而由(1)知,MN=BM=AC=×2=1,∴BN=.考点:三角形的中位线定理,勾股定理.23、(1),数轴表示见解析(2)x>3,数轴表示见解析【解题分析】
(1)先去分母,再去括号,移项、合并同类项,把x的系数化为1,再在数轴上表示出来即可;(2)分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来即可.【题目详解】解:(1)去分母得:,去括号得:,移项合并得:,系数化为1得:,在数轴上表示为:(2),由①得,x>3,由②得,x≥1,故不等式组的解集为:x>3,在数轴上表示为:【题目点拨】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24、(1)AB=10,CD=4.8;(2)BM=30厘米.【解题分析】
(1)在直角三角形ABC中,利用勾股定理求出AB的长,再利用面积法求出CD的长即可.(2)连接AC,BD交于点O,根据四边形ABCD是菱形求出AO的长,然后根据勾股定理求出BO的长,于是可以求出B、M两点的距离.【题目详解】解:(1)在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省泉州市南安市2024-2025学年八年级上学期期末英语试题(无答案)
- 创新创业-职业核心能力课件
- 二零二五年度墓地陵园土地租赁与使用权转让合同4篇
- 母婴行业2025年度母婴用品环保认证服务合同2篇
- 二零二五版钢材货物流动银行托管运输合同3篇
- 二零二五年度木制品生产与销售承包合同3篇
- 2025年公司内部竞业保密协议
- 2025年太阳能光伏电站智能监控工程施工合同
- 2025年家长教育信息共享协议
- 2025别墅租赁合同附带特色节日活动策划与执行3篇
- 2024年高纯氮化铝粉体项目可行性分析报告
- 安检人员培训
- 危险性较大分部分项工程及施工现场易发生重大事故的部位、环节的预防监控措施
- 《榜样9》观后感心得体会四
- 2023事业单位笔试《公共基础知识》备考题库(含答案)
- 化学-广东省广州市2024-2025学年高一上学期期末检测卷(一)试题和答案
- 2025四川中烟招聘高频重点提升(共500题)附带答案详解
- EHS工程师招聘笔试题与参考答案(某大型央企)2024年
- 营销策划 -丽亭酒店品牌年度传播规划方案
- 2025年中国蛋糕行业市场规模及发展前景研究报告(智研咨询发布)
- 护理组长年底述职报告
评论
0/150
提交评论