版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省青岛42中数学八下期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A. B. C. D.2.下列图形中,是轴对称图形的是()A. B. C. D.3.如图是一个平行四边形,要在上面画两条相交的直线,把这个平行四边形分成的四部分面积相等,不同的画法有()A.1种 B.2种 C.4种 D.无数种4.如图,在▱ABCD中,∠C=130°,BE平分∠ABC,则∠AEB等于()A. B. C. D.5.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为51和38,则△EDF的面积为()A.6.5 B.5.5 C.8 D.136.若a>b,则下列结论不一定成立的是()A.a-1>b-1 B. C. D.-2a<-2b7.对于一次函数y=-3x+2,①图象必经过点(-1,-1);②图象经过第一、二、四象限;③当x>1时,y<0;④y的值随着x值的增大而增大,以上结论正确的个数是()A.0个 B.1个 C.2个 D.3个8.袋中有红球4个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取得白球的可能性较大,那么袋中白球可能有()A.3个 B.不足3个C.4个 D.5个或5个以上9.已知:如图,在菱形中,,,落在轴正半轴上,点是边上的一点(不与端点,重合),过点作于点,若点,都在反比例函数图象上,则的值为()A. B. C. D.10.如图,矩形中,对角线、交于点.若,,则的长为()A.6 B.5 C.4 D.3二、填空题(每小题3分,共24分)11.如图,在中,点分别在上,且,,则___________12.如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了_________cm.13.函数中自变量x的取值范围是.14.(2016浙江省衢州市)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=____________.15.若关于x的分式方程当的解为正数,那么字母a的取值范围是_____.16.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为_________________.17.已知实数、满足,则_____.18.直线y=3x向下平移2个单位后得到的直线解析式为______.三、解答题(共66分)19.(10分)已知:如图,一次函数与的图象相交于点.(1)求点的坐标;(2)结合图象,直接写出时的取值范围.20.(6分)如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.(1)求证:∠DEF=∠ABF;(2)求证:F为AD的中点;(3)若AB=8,AC=10,且EC⊥BC,求EF的长.21.(6分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.22.(8分)如图,一次函数y=kx+b的图象分别与x轴,y轴的正半轴分別交于点A,B,AB=2,∠OAB=45°(1)求一次函数的解析式;(2)如果在第二象限内有一点C(a,);试用含有a的代数式表示四边形ABCO的面积,并求出当△ABC的面积与△ABO的面积相等时a的值;(3)在x轴上,是否存在点P,使△PAB为等腰三角形?若存在,请直接写出所有符合条件的点P坐标;若不存在,请说明理由.23.(8分)如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为.小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.24.(8分)传统节日“春节”到来之际,某商店老板以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价x(元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?25.(10分)如图1,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(2,0),B(0,4).(1)求直线AB的解析式;(2)若点M为直线y=mx在第一象限上一点,且△ABM是等腰直角三角形,求m的值.(3)如图3,过点A(2,0)的直线交y轴负半轴于点P,N点的横坐标为-1,过N点的直线交AP于点M.求的值.26.(10分)阅读下列材料,并解爷其后的问题:我们知道,三角形的中位线平行于第一边,且等于第三边的一半,我们还知道,三角形的三条中位线可以将三角形分成四个全等的一角形,如图1,若D、E、F分别是三边的中点,则有,且(1)在图1中,若的面积为15,则的面积为___________;(2)在图2中,已知E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形EFGH是平行四边形;(3)如图3中,已知E、F、G、H分别是AB、BC、CD、AD的中点,,则四边形EFGH的面积为___________.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题分析:∵一次函数y=kx+b的图象经过一、二、四象限∴k<0,b>0∴直线y=bx-k经过一、二、三象限考点:一次函数的性质2、B【解题分析】
轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能完全重合,根据轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、不符合定义,不是轴对称图形,故本选项错误;B、符合定义是轴对称图形,故本选项正确;C、不符合定义,不是轴对称图形,故本选项错误;D、不符合定义,不是轴对称图形,故本选项错误.故选:B.【题目点拨】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、D【解题分析】
利用平行四边形为中心对称图形进行判断.【题目详解】解:∵平行四边形为中心对称图形,∴经过平行四边形的对称中心的任意一条直线可把这个平行四边形分成的四部分面积相等.故选:D.【题目点拨】本题考查的是中心对称,掌握平行四边形是中心对称图形以及中心对称图形的性质是解题的关键.4、D【解题分析】
由平行四边形ABCD中,∠C=130°,可求得∠ABC的度数,又由BE平分∠ABC,即可求得∠CBE的度数,然后由平行线的性质,求得答案.【题目详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠C=180°,∠AEB=∠CBE,∵∠C=130°,∴∠ABC=180°-∠C=50°,∵BE平分∠ABC,∴∠CBE=∠ABC=25°,∴∠AEB=∠CBE=25°.故选D.【题目点拨】此题考查了平行四边形的性质,属于基础题,解答本题的关键是掌握平行四边形邻角互补的性质,难度一般.5、A【解题分析】
过点D作DH⊥AC于H,利用角平分线的性质得到DF=DH,将三角形EDF的面积转化为三角形DGH的面积来求.【题目详解】如图,过点D作DH⊥AC于H,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
在Rt△DEF和Rt△DGH中,DE=DG∴Rt△DEF≌Rt△DGH(HL),
∴S△DEF=S△DGH,
∵△ADG和△AED的面积分别为51和38,
∴△EDF的面积=12×(51-38【题目点拨】本题考查的知识点是角平分线的性质及全等三角形的判定及性质,解题关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.6、C【解题分析】
不等式两边同时加减一个数,或同时乘除一个不为0的数,不等号不改变方向,不等式两边同时乘除一个不为0的数,不等号改变方向,根据不等式的性质判断即可.【题目详解】A.不等式a>b两边同时减1,a-1>b-1一定成立;B.不等式a>b两边同时除以3,一定成立;C.不等式a>b两边同时平方,不一定不成立,可举反例:,但是;D.不等式a>b两边同时乘以-2,-2a<-2b一定成立.故选C.【题目点拨】本题考查不等式的性质,熟记不等式两边同时加减一个数,或同时乘除一个不为0的数,不等号不改变方向,不等式两边同时乘除一个不为0的数,不等号改变方向,是解题的关键.7、B【解题分析】
根据一次函数图象上点的坐标特征对①进行判断;根据一次函数的性质对②、④进行判断;利用x>1时,函数图象在y轴的左侧,y<1,则可对③进行判断.【题目详解】解:①、当x=-1时,y=-3x+2=5,则点(-1,-1)不在函数y=-3x+2的图象上,所以①选项错误;②、k=-3<0,b=2>0,函数图象经过第一、二、四象限,所以②选项正确;③、当x>1时,y<-1,所以③选项错误;④、y随x的增大而减小,所以④选项错误.故选:B.【题目点拨】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.8、D【解题分析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.9、C【解题分析】
过作,交于,根据菱形的性质得出四边形是平行四边形,,,解直角三角形求得,作轴于,过点作于,解直角三角形求得,,设,则,根据反比例函数系数的几何意义得出,解得,从而求得的值.【题目详解】解:如图,过作,交于,在菱形中,,,,,,,,四边形是平行四边形,,于点,,作轴于,过点作于,,,,,,,,,,设,则,点,都在反比例函数图象上,,解得,,,.故选.【题目点拨】本题考查了反比例函数系数的几何意义,菱形的性质,解直角三角形等,求得点的坐标是解题的关键.10、B【解题分析】
由矩形的性质可得:∠ABC=90°,OA=OC=OB=OD=1,∠AOB=2∠ACB=60°,△AOB为等边三角形,故AB=OA=1.【题目详解】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD=AC=1,∠ABC=90°,∴∠OBC=∠ACB=30°∵∠AOB=∠OBC+∠ACB∴∠AOB=60°∵OA=OB∴△AOB是等边三角形∴AB=OA=1故选:B【题目点拨】本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形判定和性质,是基础题,比较简单.二、填空题(每小题3分,共24分)11、【解题分析】
根据相似三角形的判定定理得到△ADE∽△ABC,根据相似三角形的性质计算即可.【题目详解】∵DE∥BC,
∴△ADE∽△ABC,∴,
∴,
故答案为:.【题目点拨】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.12、1【解题分析】
根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.【题目详解】Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5(cm);∴AD+BD-AB=1AD-AB=10-8=1cm;故橡皮筋被拉长了1cm.
故答案是:1.【题目点拨】此题主要考查了等腰三角形的性质以及勾股定理的应用,解题的关键是理解题意,灵活运用所学知识解决问题.13、【解题分析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.【题目详解】解:要使在实数范围内有意义,必须.14、4或﹣1.【解题分析】
根据题意画图如下:以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣1,1),则x=4或﹣1;故答案为4或﹣1.15、a>1且a≠3【解题分析】
首先根据题意求解x的值,再根据题意可得分式方程的解大于0,注意分式方程的增根问题.【题目详解】解:去分母得:3x﹣a=x﹣1,解得:x=,由分式方程的解为正数,得到>0,≠1,解得:a>1且a≠3,故答案为:a>1且a≠3【题目点拨】本题主要考查分式方程的解参数问题,这类题目特步要注意分式方程的增根问题.16、(21008,21009).【解题分析】观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008),即A2017(21008,21009).故答案为(21008,21009).【题目点拨】本题主要考查一次函数图象中点的坐标特征以及规律问题中点的坐标变化特征,解题的关键是找出变化规律A2n+1((﹣2)n,2(﹣2)n)(n为自然数).解决时的关键是要先写出一些点的坐标,根据坐标的特征找出变化的规律.17、3【解题分析】
根据分式的运算法则即可求出答案.【题目详解】解:等式的右边==等式的左边,
∴,解得:,
∴A+B=3,
故答案为:3【题目点拨】本题考查分式的运算,解题的关键是熟练掌握分式的运算法则以及二元一次方程组的解法.18、y=3x-1【解题分析】
直接利用一次函数图象的平移规律“上加下减”即可得出答案.【题目详解】直线y=3x沿y轴向下平移1个单位,则平移后直线解析式为:y=3x-1,故答案为:y=3x-1.【题目点拨】本题主要考查一次函数的平移,掌握平移规律是解题的关键.三、解答题(共66分)19、(1)点A的坐标为;(2)【解题分析】
(1)将两个函数的解析式联立得到方程组,解此方程组即可求出点A的坐标;(2)根据函数图象以及点A坐标即可求解.【题目详解】解:(1)依题意得:,解得:,∴点A的坐标为;(2)由图象得,当时,的取值范围为:.【题目点拨】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20、(1)见解析;(2)见解析;(3)【解题分析】
(1)根据等角的余角相等证明即可;(2)如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,首先证明△ANB≌△DME,可得AN=DM,然后证明△AFN≌△DFM,求出AF=FD即可;(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,想办法求出FM,EM即可.【题目详解】(1)证明:∵CB=CE,∴∠CBE=∠CEB,∵∠ABC=∠CED=90°,∴∠DEF+∠CEB=90°,∠ABF+∠CBE=90°,∴∠DEF=∠ABF.(2)证明:如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.∵∠ABN=∠DEM,∠ANB=∠M=90°,AB=DE,∴△ANB≌△DME(AAS),∴AN=DM,∵∠ANF=∠M=90°,∠AFN=∠DFM,AN=DM,∴△AFN≌△DFM(AAS),∴AF=FD,即F为AD的中点;(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.在Rt△ABC中,∵∠ABC=90°,AC=10,AB=8,∴BC=EC==6,∵EC⊥BC,∴∠BCE=∠ACD=90°,∵AC=CD=10,∴AD=10,∴DF=AF=5,∵∠MED=∠CEB=45°,∴EM=MD=4,在Rt△DFM中,FM==3,∴EF=EM-FM=.【题目点拨】本题考查旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、证明见解析【解题分析】
证明:连接BD,交AC于点O,根据四边形ABCD是平行四边形,得到OA=OC,OB=OD,由此推出OE=OF,利用对角线互相平分的四边形是平行四边形即可得到结论.【题目详解】连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∵OE=OF,OB=OD∴四边形DEBF是平行四边形.【题目点拨】此题考查平行四边形的性质及判定,熟记判定定理及性质定理是解题的关键.22、(1)一次函数解析式为
y=-x+1(1)a=−(3)存在,满足条件的点P的坐标为(0,0)或(1−1,0)或(1+1,0)或(-1,0).【解题分析】
(1)根据勾股定理求出A、B两点坐标,利用待定系数法即可解决问题;
(1)根据S四边形ABCD=S△AOB+S△BOC计算即可,列出方程即可求出a的值;
(3)分三种情形讨论即可解决问题;【题目详解】(1)在
Rt△ABO中,∠OAB=45°,
∴∠OBA=∠OAB-∠OAB=90°-45°=45°
∴∠OBA=∠OAB
∴OA=OB
∴OB1+OA1=AB1即:1OB1=(1)1,
∴OB=OA=1
∴点A(1,0),B(0,1).
∴解得:
∴一次函数解析式为
y=-x+1.
(1)如图,
∵S△AOB=×1×1=1,S△BOC=×1×|a|=-a,
∴S四边形ABCD=S△AOB+S△BOC=1-a,
∵S△ABC=S四边形ABCO-S△AOC=1-a-×1×=-a,
当△ABC的面积与△ABO面积相等时,−a=1,解得a=−.
(3)在x轴上,存在点P,使△PAB为等腰三角形
①当PA=PB时,P(0,0),
②当BP=BA时,P(-1,0),
③当AB=AP时,P(1-1,0)或(1+1,0),
综上所述,满足条件的点P的坐标为(0,0)或(1−1,0)或(1+1,0)或(-1,0).【题目点拨】本题考查一次函数综合题、解直角三角形、待定系数法、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是学会圆分割法求多边形面积,学会用分类讨论的思想思考问题,属于中考常考题型.23、游戏公平【解题分析】
直接利用概率公式求得指针指向蓝色区域和红色区域的概率,进而比较得出答案.【题目详解】解:∵红色区域扇形的圆心角为,∴蓝色区域扇形的圆心角为60°+60°,,,∴,所以游戏公平.故答案为:游戏公平.【题目点拨】本题考查游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24、(1)y=-10x2+100x+6000(0≤x≤30);(2)单价定为5元时,每月销售商品的利润最大,最大利润为6250元.【解题分析】试题分析:(1)单价上涨x(元),由单价每上涨1元,该商品每月的销量就减少10件得到销售量为(300-10x)件,根据利润等于销售价减成本得到每件的利润为(80-60+x),因此每月销售该商品的利润y等于月销售量×每件的利润;(2)把(1)得到的函数关系式进行配方得到y=-10(x-5)2+6250,然后根据二次函数的最值问题易得到单价定为多少元时,每月销售该商品的利润最大.试题解析:(1)y=(80-60+x)(300-10x)=-10x2+100x+6000(0≤x≤30);(2)y=-10x2+100x+6000=-10(x-5)2+6250∵a=-10<0,∴当x=5时,y有最大值,其最大值为6250,即:单价定为5元时,每月销售商品的利润最大,最大利润为6250元.考点:二次函数的应用.25、(2)y=﹣2x+2;(2)m的值是或或2;(3)2.【解题分析】
(2)设直线AB的解析式是y=kx+b,代入得到方程组,求出即可;(2)当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,证△BMN≌△ABO(AAS),求出M的坐标即可;②当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,同法求出M的坐标;③当AM⊥BM,且AM=BM时,过M作MN⊥x轴于N,MH⊥y轴于H,证△BHM≌△AMN,求出M的坐标即可.(3)设NM与x轴的交点为H,分别过M、H作x轴的垂线垂足为G,HD交MP于D点,求出H、G的坐标,证△AMG≌△ADH,△AMG≌△ADH≌△DPC≌△NPC,推出PN=PD=AD=AM代入即可求出答案.【题目详解】(2)∵A(2,0),B(0,2),设直线AB的解析式是y=kx+b,代入得:,解得:k=﹣2,b=2,∴直线AB的解析式是y=﹣2x+2.(2)如图,分三种情况:①如图①,当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,∵BM⊥BA,MN⊥y轴,OB⊥OA,∴∠MBA=∠MNB=∠BOA=90°,∴∠NBM+∠NMB=90°,∠ABO+∠NBM=90°,∴∠ABO=∠NMB,在△BMN和△ABO中,∴△BMN≌△ABO(AAS),MN=OB=2,BN=OA=2,∴ON=2+2=6,∴M的坐标为(2,6),代入y=mx得:m=,②如图②,当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,易知△BOA≌△ANM(AAS),同理求出M的坐标为(6,2),代入y=mx得:m=,③如图③,当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,∴四边形ONMH为矩形,易知△BHM≌△AMN,∴MN=MH,设M(x2,x2)代入y=mx得:x2=mx2,∴m=2,答:m的值是或或2.(3)如图3,设NM与x轴的交点为H,过M作MG⊥x轴于G,过H作HD⊥x轴,HD交MP于D点,即:∠MGA=∠DHA=900,连接ND,ND交y轴于C点由与x轴交于H点,∴H(2,0),由与y=kx﹣2k交于M点,∴M(3,k),而A(2,0),∴A为HG的中点,AG=AH,∠MAG=∠DAH∴△AMG≌△ADH(ASA),∴AM=AD又因为N点的横坐标为﹣2,且在上,∴N(-2,﹣k),同理D(2,﹣k)∴N关于y轴对称点为D∴PC是ND
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年海口客运资格证培训内容
- 2024年货运从业资格证和客运
- 2024年建筑施工塔吊租用合同
- 教师资格考试小学面试心理健康试题与参考答案
- 废旧物资处理保证书
- 高层建筑设计要点分析
- 教师资格考试高中音乐学科知识与教学能力试题及答案指导
- 《语文园地二》说课稿
- 碳纤维布加固损伤再生混凝土梁受弯性能研究
- 拓展训练融入初中体育教学的创新策略与实施路径
- 2023年江苏省淮安市中考英语真题(解析版)
- 城乡供水一体化项目小沔至狮滩等段供水管网连通改造工程初步设计报告
- 2024政府采购评审专家知识题库(含答案)
- 基于义教课标(2022版)七年级生物上册教材分析 课件(新教材)
- 《用字母表示数》 单元作业设计
- HG/T 22820-2024 化工安全仪表系统工程设计规范(正式版)
- 数学文化 课件 2-中国古代数学与九章算术
- 2024时事政治考试题库(典优)
- 第七章课程概述
- 爆破安全技术交底书
- 2024《公共基础知识必刷300题》题库带答案(轻巧夺冠)
评论
0/150
提交评论