8.3简单几何体的表面积与体积_第1页
8.3简单几何体的表面积与体积_第2页
8.3简单几何体的表面积与体积_第3页
8.3简单几何体的表面积与体积_第4页
8.3简单几何体的表面积与体积_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§8.3简单几何体的表面积与体积几何体表面积体积说明图示柱体棱柱S棱柱=S侧+2S底V棱柱=ShS为棱柱的底面积,h为棱柱的高圆柱底面积:S底=2πr2侧面积:S侧=2πrl表面积:S=2πr(r+l)V圆柱=Sh=πr2h圆柱底面圆的半径为r,面积为S,高为h锥体棱锥S棱锥=S侧+S底V棱锥=eq\f(1,3)ShS为棱锥的底面积,h为棱锥的高圆锥底面积:S底=πr2侧面积:S侧=πrl表面积:S=πr(r+l)V圆锥=eq\f(1,3)Sh=eq\f(1,3)πr2h圆锥底面圆的半径为r,面积为S,高为h台体棱台S棱台=S侧+S上底+S下底V棱台=eq\f(1,3)(S′+eq\r(S′S)+S)hS′,S分别为棱台的上、下底面面积,h为棱台的高圆台上底面面积:S上底=πr′2下底面面积:S下底=πr2侧面积:S侧=π(r′l+rl)表面积:S=π(r′2+r2+r′l+rl)V圆台=eq\f(1,3)(S+eq\r(SS′)+eq\r(S′))h=eq\f(1,3)π(r2+rr′+r′2)h圆台上底面圆的半径为r′,面积为S′,下底面圆的半径为r,面积为S,高为h球体S球=4πR2V球=eq\f(4,3)πR3R为球的半径题型一:几何体的表面积和体积【典例】1.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】B【详解】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.2.已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为.【答案】【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵∴∴∴.故答案为:.3.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A. B. C. D.【答案】C【详解】

如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.4.已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为(

)A. B. C. D.【答案】B【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在中,,而,取中点,连接,有,如图,,,由的面积为,得,解得,于是,所以圆锥的体积.故选:B5.在正四棱台中,,则该棱台的体积为.【答案】/【分析】结合图像,依次求得,从而利用棱台的体积公式即可得解.【详解】如图,过作,垂足为,易知为四棱台的高,因为,则,故,则,所以所求体积为.故答案为:.6.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.【答案】【分析】方法一:割补法,根据正四棱锥的几何性质以及棱锥体积公式求得正确答案;方法二:根据台体的体积公式直接运算求解.【详解】方法一:由于,而截去的正四棱锥的高为,所以原正四棱锥的高为,所以正四棱锥的体积为,截去的正四棱锥的体积为,所以棱台的体积为.方法二:棱台的体积为.故答案为:.【方法总结】求几何体体积的常用方法:①公式法:直接代入公式求解;②等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可;③补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等;④分割法:将几何体分割成易求解的几部分,分别求体积.7.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则(

)A. B. C. D.【答案】C【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,所以,又,则,所以,所以甲圆锥的高,乙圆锥的高,所以.8.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()(

)A. B. C. D.【答案】C【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.题型二:内切球、外接球问题【典例】1.已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为(

)A. B. C. D.【答案】A【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.【方法总结】1.球的截面问题:如图,设小圆的圆心为o′,半径为r,球的球心为o,半径为R,则①oo′⊥圆面o′;②R2=r2+oo′2.2.(1)球与多面体:①多面体的外接球:多面体的顶点均在球面上;球心到各个顶点距离相等(球半径);②多面体的内切球:多面体的各面均与球面相切;球心到各面距离相等(球半径)(2)球与旋转体:①旋转体的外接球:旋转体的顶点在球面上;底面为球截面;球心在旋转轴上.②旋转体的内切球:旋转体的各面均与球面相切;球心在旋转轴上.2.已知A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为(

)A. B. C. D.【答案】A【分析】由题可得为等腰直角三角形,得出外接圆的半径,则可求得到平面的距离,进而求得体积.【详解】,为等腰直角三角形,,则外接圆的半径为,又球的半径为1,设到平面的距离为,则,所以.3.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是(

)A. B. C. D.【答案】C【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,[方法一]:导数法设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.[方法二]:基本不等式法由方法一故所以当且仅当取到,当时,得,则当时,球心在正四棱锥高线上,此时,,正四棱锥体积,故该正四棱锥体积的取值范围是4.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B【详解】分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有5.在正方体中,E,F分别为AB,的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.【答案】12【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论