河北省隆尧县北楼中学等2023年数学九年级第一学期期末质量跟踪监视试题含解析_第1页
河北省隆尧县北楼中学等2023年数学九年级第一学期期末质量跟踪监视试题含解析_第2页
河北省隆尧县北楼中学等2023年数学九年级第一学期期末质量跟踪监视试题含解析_第3页
河北省隆尧县北楼中学等2023年数学九年级第一学期期末质量跟踪监视试题含解析_第4页
河北省隆尧县北楼中学等2023年数学九年级第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省隆尧县北楼中学等2023年数学九年级第一学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在下列图形中,是中心对称图形而不是轴对称图形的是()A.圆 B.等边三角形 C.梯形 D.平行四边形2.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A. B. C. D.3.将二次函数的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为()A. B.C. D.4.已知正多边形的一个内角是135°,则这个正多边形的边数是()A.3 B.4 C.6 D.85.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为()A.2 B.4 C.6 D.86.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是()A. B. C. D.7.如图,在正方形中,以为边作等边,延长分别交于点,连接与相交于点,给出下列结论:①;②;③;④;其中正确的是()A.①②③④ B.②③ C.①②④ D.①③④8.如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.70° B.45° C.35° D.30°9.如图,立体图形的俯视图是()A. B. C. D.10.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出1个球,恰好是红球的概率为()A. B. C. D.11.一元二次方程x2-8x-1=0配方后为()A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=1712.从1到9这9个自然数中任取一个,是偶数的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.已知点P1(a,3)与P2(-4,b)关于原点对称,则ab=_____.14.如图,BA是⊙C的切线,A为切点,AC=1,AB=2,点D是⊙C上的一个动点,连结BD并延长,交AC的延长线于E,则EC的最大值为_______.15.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.16.菱形ABCD的周长为20,且有一个内角为120°,则它的较短的对角线长为______.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_____.18.河堤横截面如图所示,堤高为4米,迎水坡的坡比为1:(坡比=),那么的长度为____________米.三、解答题(共78分)19.(8分)解方程:20.(8分)如果是关于x的一元二次方程;(1)求m的值;(2)判断此一元二次方程的根的情况,如果有实数根则求出根,如果没有说明理由则可.21.(8分)为了响应国家“大众创业、万众创新”的双创政策,大学生小王与同学合伙向市政府申请了10万元的无息创业贷款,他们用这笔贷款,注册了一家网店,招收了6名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为3500元,该网店每月还需支付其它费用0.9万元.开工后的第一个月,小王他们将该电子产品的销售单价定为6元,结果当月销售了1.8万件.(1)小王他们第一个月可以偿还多少万元的无息贷款?(2)从第二个月开始,他们打算上调该电子产品的销售单价,经过市场调研他们得出:如果单价每上涨1元,月销售量将在现有基础上减少1000件,且物价局规定该电子产品的销售单价不得超过成本价的250%.小王他们计划在第二个月偿还3.4万元的无息贷款,他们应该将该电子产品的销售单价定为多少元?22.(10分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求AC和BD的长.23.(10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.24.(10分)如图,在每个小正方形的边长均为1的方格纸中,线段的端点、均在小正方形的顶点上.(1)在方格纸中画出以为一条直角边的等腰直角,顶点在小正方形的顶点上.(2)在方格纸中画出的中线,将线段绕点顺时针旋转得到线段,画出旋转后的线段,连接,直接写出四边形的面积.25.(12分)不透明的袋子中装有1个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、1.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率;(2)随机摸出两个小球,直接写出“两次取出的球标号和为奇数”的概率.26.如图,AD是⊙O的弦,AC是⊙O直径,⊙O的切线BD交AC的延长线于点B,切点为D,∠DAC=30°.(1)求证:△ADB是等腰三角形;(2)若BC=,求AD的长.

参考答案一、选择题(每题4分,共48分)1、D【解析】解:选项A、是中心对称图形,也是轴对称图形,故此选项错误;选项B、不是中心对称图形,是轴对称图形,故此选项错误;选项C、不是中心对称图形,是轴对称图形,故此选项错误;选项D、是中心对称图形,不是轴对称图形,故此选项正确;故选D.2、A【解析】设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式即可得到关系式,观察形式即可解答.【详解】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式则有:y=12以上是二次函数的表达式,图象是一条抛物线,所以A选项是正确的.【点睛】考查了现实中的二次函数问题,考查了学生的分析、解决实际问题的能力.3、B【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:.故选:B.【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4、D【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=,∴这个正多边形的边数是1.故选:D.【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.5、D【分析】根据三角形的中点的概念求出AB、AC,根据三角形中位线定理求出DF、EF,计算得到答案.【详解】解:∵点E是AC的中点,AB=AC,∴AB=AC=4,∵D是边AB的中点,∴AD=2,∵D、F分别是边、AB、BC的中点,∴DF=AC=2,同理,EF=2,∴四边形ADFE的周长=AD+DF+FE+EA=8,故选:D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.6、A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.7、A【分析】根据等边三角形、正方形的性质求得∠ABE=30°,利用直角三角形中30°角的性质即可判断①;证得PC=CD,利用三角形内角和定理即可求得∠PDC,可求得∠BPD,即可判断②;求得∠FDP=15°,∠PBD=15°,即可证明△PDE∽△DBE,判断③正确;利用相似三角形对应边成比例可判断④.【详解】∵△BPC是等边三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ADC=∠BCD=90°

∴∠ABE=∠DCF=30°,∴,

∴;故①正确;

∵PC=CD,∠PCD=30°,

∴∠PDC=∠CPD===75°,∴∠BPD=∠BPC+∠CPD=60°+75°=135°,故②正确;

∵∠PDC=75°,∴∠FDP=∠ADC-∠PDC=90°-75°=15°,

∵∠DBA=45°,

∴∠PBD=∠DBA-∠ABE=45°-30°=15°,

∴∠EDP=∠EBD,

∵∠DEP=∠DEP,

∴△PDE∽△DBE,故③正确;

∵△PDE∽△DBE,∴,即,故④正确;综上:①②③④都是正确的.

故选:A.【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.8、C【分析】先根据垂径定理得出=,再由圆周角定理即可得出结论.【详解】解:∵OA⊥BC,∠AOB=70°,∴=,∴∠ADC=∠AOB=35°.故选C.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.9、C【解析】找到从上面看所得到的图形即可.【详解】A、是该几何体的主视图;B、不是该几何体的三视图;C、是该几何体的俯视图;D、是该几何体的左视图.故选C.【点睛】考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.10、B【分析】直接利用概率公式求解;【详解】解:从袋中摸出一个球是红球的概率;故选B.【点睛】考查了概率的公式,解题的关键是牢记概率的的求法.11、A【解析】x2-8x-1=0,移项,得x2-8x=1,配方,得x2-8x+42=1+42,即(x-4)2=17.故选A.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.12、B【解析】∵在1到9这9个自然数中,偶数共有4个,∴从这9个自然数中任取一个,是偶数的概率为:.故选B.二、填空题(每题4分,共24分)13、﹣1【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)可得到a,b的值,再代入ab中可得到答案.【详解】解:∵P(a,3)与P′(-4,b)关于原点的对称,

∴a=4,b=-3,

∴ab=4×(-3)=-1,

故答案为:-1.【点睛】此题主要考查了坐标系中的点关于原点对称的坐标特点.注意:关于原点对称的点,横纵坐标分别互为相反数.14、【分析】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,根据相似三角形的性质得到,代入求值即可;【详解】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,∵,∴,∴,∴,即,解得;故答案是.【点睛】本题主要考查了相似三角形对应线段成比例和圆的切线性质,准确计算是解题的关键.15、【解析】试题分析:,解得r=.考点:弧长的计算.16、1【分析】根据菱形的性质可得菱形的边长为1,然后根据内角度数进而求出较短对角线的长.【详解】如图所示:菱形ABCD的周长为20,AB=20÷4=1,又,四边形ABCD是菱形,,AB=AD,是等边三角形,BD=AB=1.故答案为1.【点睛】本题主要考查菱形的性质及等边三角形,关键是熟练掌握菱形的性质.17、【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【详解】解:如图,∵∠ACB=90°,AC=BC=,∴AB==,∴S扇形ABD==,又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案是:.【点睛】本题考查了扇形的面积公式:S=,也考查了勾股定理以及旋转的性质.18、8【分析】在Rt△ABC中,根据坡面AB的坡比以及BC的值,求出AC的值,再通过解直角三角形即可求出斜面AB的长.【详解】∵Rt△ABC中,BC=6米,迎水坡AB的坡比为1:,∴BC:AC=1:,∴AC=•BC=4(米),∴(米)【点睛】本题考查了解直角三角形的应用----坡度坡角问题,熟练运用勾股定理是解答本题的关键.三、解答题(共78分)19、(1),;(2)【分析】(1)先移项,再利用配方法求解即可.(2)合并同类项,再利用配方法求解即可.【详解】(1)解得,(2)解得【点睛】本题考查了一元二次方程的计算,掌握利用配方法求方程的解是解题的关键.20、(1)m=1;(2)有两个不相等的实数根,,.【分析】(1)因为原方程是一元二次方程,所以x的最高次数为2且二次项系数不为0,即m+1=2且m-2≠0,解方程即可;(2)将m=1代入原方程中,得x2-2x-2=0,根据判别式即可判断实数根的个数,然后根据求根公式求出实数根.【详解】(1)由题意得m+1=2且m-20得:m=1故m的值为1;(2)由(1)得原方程:x2-2x-2=0其中,a=1,b=-2,c=-2∴=4+8=12>0∴有两个不相等的实数根;∴根据求根公式∴.【点睛】本题考察了一元二次方程的概念,利用判别式判断实数根的个数,和公式法解一元二次方程,熟练记忆判别式和求根公式是解题的关键;其中,(1)问中不要忘记二次项系数不能为0,这是易错点.21、(1)0.6万元;(2)2元【分析】(1)根据利润=单件利润×数量﹣员工每人每月的工资×员工数﹣其它费用,即可求出结论;(2)设他们将该电子产品的销售单价定为x元,则月销售量为[12000﹣1000(x﹣6)]件,根据第二个月的利润为3.4万元,即可得出关于x的一元二次方程,即可求解.【详解】(1)(6﹣4)×12000﹣3500×6﹣9000=6000(元),6000元=0.6万元.答:小王他们第一个月可以偿还0.6万元的无息贷款.(2)设他们将该电子产品的销售单价定为x元,则月销售量为[12000﹣1000(x﹣6)]件,依题意,得:(x﹣4)[12000﹣1000(x﹣6)]﹣3500×6﹣9000=34000,整理,得:x2﹣22x+160=0,解得:x1=2,x2=1.∵4×250%=10,1>10,∴x=2.答:他们应该将该电子产品的销售单价定为2元.【点睛】本题主要考查一元二次方程的实际应用,根据“利润=单件利润×数量﹣员工每人每月的工资×员工数﹣其它费用”,列出方程,是解题的关键.22、AC=10,BD=10【分析】根据菱形的性质可得Rt△ABO中,∠ABO=∠ABD=∠ABC=30°,则可得AO和BO的长,根据AC=2AO,BD=2BO可得AC和BD的长;【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC,OB=OD=BD,∠ABD=∠ABC=30°,在Rt△ABO中,AB=10,∠ABO=∠ABD=30°,∴AO=AB=5,BO=AB=5,∴AC=2AO=10,BD=2BO=10.【点睛】本题主要考查了菱形的性质,解直角三角形,掌握菱形的性质,解直角三角形是解题的关键.23、解:(3)一次函数的表达式为(4)当销售单价定为4元时,商场可获得最大利润,最大利润是893元(3)销售单价的范围是.【解析】(3)列出二元一次方程组解出k与b的值可求出一次函数的表达式.(4)依题意求出W与x的函数表达式可推出当x=4时商场可获得最大利润.(3)由w=500推出x4﹣380x+7700=0解出x的值即可.【详解】(3)根据题意得:,解得k=﹣3,b=3.所求一次函数的表达式为;(4)=,∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而销售单价不低于成本单价,且获利不得高于45%,即60≤x≤60×(3+45%),∴60≤x≤4,∴当x=4时,W==893,∴当销售单价定为4元时,商场可获得最大利润,最大利润是893元.(3)令w=500,解方程,解得,,又∵60≤x≤4,所以当w≥500时,70≤x≤4.考点:3.二次函数的应用;4.应用题.24、(1)见解析;(2)图形见解析,10【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论