当前数学课改中的一些问题_第1页
当前数学课改中的一些问题_第2页
当前数学课改中的一些问题_第3页
当前数学课改中的一些问题_第4页
当前数学课改中的一些问题_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

当前数学课改中的一些问题摘要:小学数学的“三维”目标是知识与技能,过程与方法、情感态度与价值观。“三维”数学教育目标应当具体化,还是提“双基”、数学能力、理性精神更能体现数学学科的特点;数学课程不能以人人学会作为设置理念,应当保持高标准;中学生有能力在一个相对连贯的系统中学习中学数学课程中的大部分内容,不应人为地设置“螺旋”;数学的逻辑性很强,模块化方式设置数学课程不利于课程内容的组织,可能削弱知识的系统性,数学课程“结构创新”要非常慎重;数学教学中,联系学生生活实际、情境化、组织学生活动、数学应用等都应以促使学生理解数学本质为基本原则;我国数学课程教材中,繁、难、偏、旧已基本不存在,学生负担主要是教学引起的,因此教师专业化问题比课程改革更重要;加强亲和力、问题性、思想性、联系性等是改进数学教学方式的关键。一、关于课程目标数学教育目标,以往的“教学大纲”是从基础知识、基本技能、能力(思维能力、运算能力、空间想象能力,分析和解决实际问题的能力)、个性品质和辩证唯物主义观点等几个方面作出规定,现在的“课程标准”从“知识与技能”“过程与方法”“情感态度价值观”作出规定。两者比较来看,“课程标准”提得比较中性,数学学科的目标可以这样提,其他学科的目标也可以这样提;“教学大纲”更加注重从数学的学科特点出发,具体反映数学在学生发展中所具有的、其他学科不能替代的作用,因此对数学教学的指导性更强,更有利于教师在教学实践中把握,操作性也更好些。另外还应注意到,“三维目标”的科学性值得探讨。当代认知心理学认为,“方法”也是知识,把“方法”从知识中独立出来缺乏科学依据。重视“过程”是对的,但把它与“方法”并列在一起作为课程目标的一个维度,有失偏颇。实际上,“过程”应当指达到数学教育目标的过程,例如,学生掌握“双基”的过程,数学能力形成的过程,等等。具体体现在两个方面:一是数学知识的发生发展过程,二是学生的思维过程。重视“过程”,对教师而言,就是要根据学生的思维规律,通过“再创造”来“再现”知识的原发现过程,即按照知识的原发展线索,复现知识的探究过程:知识结构的建立和扩展过程;值得研究的问题及其研究方法的提出过程;数学概念、公式、定理等的归纳、概括和证明过程;解题思路的探索过程;解题方法的猜想、尝试和形成过程;等等。对学生而言,则要加强对数学概念和原理(定义、定理、公式、法则等)的概括过程。一般来说,学生的思维总是从具体到抽象,由此及彼、由表及里,从个别到一般,从片面到全面,其中,类比、联想、特殊化、推广等是主要的逻辑思考方式。所以,数学教学中,应当根据学生的数学思维规律,通过丰富的、具有典型性的素材,引导学生进行充分的类比、联想、特殊化和推广等思维活动,经历概念的归纳和概括过程。从思维发展心理学的观点看,“过程”的核心是“让学生经历数学概念的概括过程”。因为“概括是在思想上将许多具有共同特征的事物,或将某种事物已经分离出的一般的、共同的属性、特征结合起来。概括的过程,就是把个别事物的本质属性推及为同类事物的本质属性。这个过程也就是思维由个别通向一般的过程。”数学学习的过程就是一个概括过程,应用数学知识解决问题也是一个概括过程。学生从认识具体数学事例的感知和表象上升到对数学概念本质的理解,主要通过抽象与概括来实现。没有概括,学生就不能掌握和运用知识;没有概括,学生就不可能形成概念,从而由概念所引申的定义、定理、公式、法则等就不可能被学生掌握;没有概括,学生的认知结构就无法形成。因此,概括水平成为衡量学生思维发展水平高低的等级指标,思维能力通过概括能力的提高而得到显现。另外,作为课程目标,应当有客观的、可以界定的评价标准。由于“过程”可以因人而异,不同人的“过程”肯定不同,“过程”的优劣没有客观标准,是否达标就很难把握。把“过程”纳入到目标范畴,会造成教学评价中的相对主义,这也是一段时间以来流行“只要经历了过程,形成对知识的体验就可以,落实下来一点什么不重要,学到多少知识不重要”的主要原因。二、数学课程内容──保持高标准还是降低标准一段时间以来,“大众数学”的口号在世界上被广泛宣传,而且被用来指导数学课程改革。因为讲平等,要让所有人都有机会学习数学,因此降低数学课程内容难度成为世界改革的潮流。但随着改革的深入,人们发现为了使数学能被一般大众所接受而简单地降低内容难度,不但没有提高大众的数学水平,反而导致大众数学水平的整体下降。显然,数学课程不能以人人学会作为设置理念,否则将是没有终点的退却。美国在倡导“大众数学”后,数学教育质量严重滑坡,学生在国际测试中不能令人满意的表现,大众数学水平的整体下降,引起一些有识之士的担心。全美数学教师联合会在2000年4月出版的课程标准修订版中,明确提出了“公平需要对所有学生都有高要求并提供均等且优良的机会”。所以,“大众数学”不能以降低标准为代价,“公平”既表现在(高)标准的一致上,也表现在优良学习机会的一致上。心理学的研究表明,对学生学习相对高深内容的期待,对培养学生的数学学习兴趣、增强他们的自信心有重要影响,因为人都有一种不甘示弱、接受挑战的心理倾向。如果认为必须降低内容水平才能适应学生的学习能力,这种心理暗示将使我们的下一代畏惧数学(他们会认为“我反正学不了,所以我也不必付出努力”),成为低要求的受害者。值得注意的是,要明确“高标准”的含义。例如,我们不能认为要求学生理解用“关系”语言表述的函数概念就是高标准。只有符合学生认知发展水平、学生经过真正的努力能够达到的要求,才是“高标准”。课堂教学中,教师应当通过适当的方式让学生知道对数学学习的高标准。例如,不断地向学生提出有挑战性的学习任务;要求学生不仅记住事实和操作步骤,而且要思考并理解其原理;鼓励学生独立解答问题,探索用不同途径解答问题,并愿意坚持不懈地做出努力;出现错误时,要求学生不是改正答案了事,而是要思考出现错误的原因,善于从错误中学习;启发和鼓励学生使用类比、推广、特殊化等逻辑思考方法,自己尝试得出一些数学结论;经常要求学生反思自己的学习过程;等等。三、“螺旋上升”的原则──这个螺旋该多大为什么要螺旋式安排数学内容及其学习过程?主要还是考虑与学生心理发展水平相适应的问题,因为“学习从属于发展”。同时,数学概念可以在不同层次上得到表征,也为螺旋上升地安排学习内容提供了可能。例如,函数概念,可以直观地用描述性语言表征(初中阶段),也可以用集合与对应的语言表征(高中阶段),还可以用关系语言来表征(大学阶段)。如果学生的心理发展水平不够,还没有能力认识更多的细节、更本质的内涵,这时要采用螺旋式;如果学生的能力已经达到了,就不应人为割裂认识的链条,更何况“学习能够促进发展”。教学既要与学生思维发展水平相适应,又要尽最大努力将思维的“最近发展区”转化为“现实发展水平”。心理学研究表明,人的智力与能力发展具有年龄特征。小学阶段处于从具体形象思维向抽象逻辑思维的过渡阶段;整个中学阶段以抽象逻辑思维占主导地位,但初中阶段主要是以经验型为主的抽象逻辑思维,高中阶段主要是以理论型为主的抽象逻辑思维。其中,小学四年级(10~11岁)是从以具体形象成分为主要形式到以抽象逻辑成分为主要形式的转折点;初中二年级(13~14岁)是从经验型向理论性发展的开始;高中二年级前后(16~17岁),思维和智力发展基本成熟。显然,智力与能力发展的年龄特征,是考虑螺旋上升安排教学内容的主要依据。课程设计、教材编写以及课堂教学都要考虑年龄特征问题,根据学生发展的可能性,对学生提出适当的学习要求。不过,另一方面,我们应采取积极措施推动学生的发展,迁就学生的智力与能力水平,不积极地引导学生发展也是不正确的。正如陈省身先生说的,“学生习惯于现在的问题是,哪些因素造成了负担沉重?是因为课程繁、难、偏、旧吗?是因为教材内容多吗?是因为我们过分强调基础了吗?我们认为,这些都不是主要原因。熟悉我国中小学数学课程发展情况的人都知道,从实施九年义务教育以后,我国的数学课程、教材中,繁、难、偏、旧的情况已经基本上不存在了。另外,数学教学中强调基础能够起到减轻负担的作用,因为一旦学生有了良好的基础,并形成了逻辑推理能力,那么他们就有能力自己去解决更多更复杂的问题。实际上,强调基础没有“过分”的问题,只有“不到位”的问题。学生负担重主要来自于教学。具体表现是:(1)赶进度,3年的内容2年教完,拿出大量时间进行中考、高考复习;(2)“注入式”教学盛行,大量采取“概念──例题──练习──习题”的教学模式,概念教学一带而过,讲解例题就是归纳题型,然后就让学生进行大运动量的机械重复训练;(3)强调细枝末节,不注重基本概念;(4)强调题型训练,注重解题技巧而不重视核心数学思想方法;(5)为了解题方便,擅自增加教学内容;……要真正减轻学生负担,提高教师水平(主要是教师本身的数学素养、把握学生数学思维规律的能力),改进教学方式最关键。因此,课程改革与教师培训比较是第二位的。七、改进教学──我们应该做什么当前,为了改进数学教学,特别值得强调如下几个方面:1.亲和力:以生动活泼的呈现方式,展示数学的发生发展过程,激发兴趣和美感,引发学习激情。中学数学的绝大部分内容,是人类社会长期实践中经过千锤百炼的数学精华和基础,其中的数学概念、方法与思想的起源与发展都是自然的。如果你感到某个概念不自然,是强加于人的,那么只要想一下它的背景,它的形成过程,它的应用,以及它与其他概念的联系,就会发现它实际上是水到渠成、浑然天成的产物,不仅合情合理,甚至很有人情味。因此,数学内在的和谐自然,也是增强数学课程亲和力的源泉。这就要求我们努力选取那些与内容密切相关的、典型的、丰富的、学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念、结论及其思想方法发生发展过程的学习情境,激发学生对数学的亲切感,引发学生“看个究竟”的冲动,兴趣盎然地投入学习。在体现知识归纳概括过程中的数学思想、解决各种问题中数学的力量、数学探究和论证方法的优美精彩之处、数学的科学和文化价值等地方,用适当的方式启发学生的美感,引导学生更深入地思考,不断引发学习激情。2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。提问是创新的开始。以问题引导学习应当成为数学教学的一条基本原则。要使学生“看过问题三百个,不会解题也会问”。通过恰时恰点地提出问题,提好问题,给学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索性地学,逐步培养学生的问题意识,孕育创新精神。具体的,可以在知识形成过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题,引导学生的思考和探索活动,使他们经历观察、实验、猜测、推理、交流、反思等理性思维的基本过程,切实改进学生的学习方式。提问的关键是要把握好“度”,要做到“导而弗牵,强而弗抑,开而弗达”。这是课堂教学的关键,也是衡量教师教学水平的关键之一。3.思想性:加强数学思想方法的渗透与概括,引导学生领悟具体内容所反映的数学思想。数学教学中注重思想性,就是要以数及其运算、函数、空间观念、数形结合、向量、导数、统计、随机观念、算法等数学核心概念和基本思想为贯穿数学教学过程的“灵魂”,体现寻求一般性模式的思想和追求简洁与形式完美的精神等,引导学生领悟数学本质,体验数学中的理性精神,加强数学形式下的思考和推理训练。具体地,在核心概念的教学之初,利用“先行组织者”,在大背景下阐述它的地位和作用;在具体讨论某一内容之前,先引导学生明确需要研究的问题及其研究方法;在小结时,不但引导学生归纳知识结构,而且要从数学思想的高度进行概括和总结;等等。4.联系性:通过不同数学内容的联系与启发,强调类比、推广、特殊化、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。逻辑的严谨性是数学学科的特点之一,而不同内容的联系性、数学思想方法的一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论