版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市建平西学校2024届数学七下期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,把一块直角三角板的直角顶点放在长方形直尺的一边上,若,则的度数是()A. B. C. D.2.如图,△ABC与△DEF是全等三角形,则图中的相等线段有()A.1 B.2 C.3 D.43.下列说法中,能确定物体位置的是()A.天空中的一只小鸟B.电影院中18座C.东经120°,北纬30°D.北偏西35°方向4.下列计算正确的是()A.2a3•a2=2a6 B.(﹣a3)2=﹣a6 C.a6÷a2=a3 D.(2a)2=4a25.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE,下列说法①△BDF≌△CDE;②△ABD和△ACD面积相等;③BF∥CE;④CE=BF,其中正确的有()A.1个 B.2个 C.3个 D.4个6.若,则下列不等式正确的是()A. B. C. D.-7.如果不等式组的解集是,那么的取值范围是()A. B. C. D.8.如图,已知AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE的值为().A.50° B.30° C.20° D.60°9.如图,已知平分,于,,若,则为()A. B. C. D.10.下列命题中的假命题是A.同旁内角互补B.三角形的一个外角等于与它不相邻的两个内角之和C.三角形的中线,平分这个三角形的面积D.全等三角形对应角相等11.关于字母的多项式化简后不含项,则为()A. B. C. D.12.我们可以用图示所示方法过直线a外的一点P折出直线a的平行线b,下列判定不能作为这种方法依据的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一条直线的两条直线互相平行二、填空题(每题4分,满分20分,将答案填在答题纸上)13.直角三角形两锐角互余的逆命题是_____________.14.如图,直线AB、CD相交于E,在∠CEB的角平分线上有一点F,FM∥AB.当∠3=mo时,∠F的度数是_______.15.若关于的不等式组有解,且关于的方程有非负整数解,则符合条件的所有整数的和为_____.16.若,则以a、b为边长的等腰三角形的周长为.17.若方程组的解中x与y的值相等,则k为_____.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)如图,两块形状、大小完全相同的三角板按照如图所示的样子放置,找一找图中是否有互相平行的线段,完成下面证明:证明:∵∠______=∠______,∴______∥______(______)(填推理的依据)19.(5分)已知,平分,交于点,,求的度数.20.(8分)如图,为轴正半轴上一动点,,,且、满足,.(1)求的面积;(2)若,、为线段上的动点,作交于,FP平分∠GFC,FN平分∠AFP交x轴于N,记∠FNB=,求∠BAC(用表示);(3)若,轴于,点从点出发,在射线上运动,同时另一动点从点向点运动,到停止运动,、的速度分别为2个单位/秒、3个单位/秒,当时,求运动的时间.21.(10分)计算:如图是由四个小正方形组成的L形图案,请你再添加一个小正方形使它们能组成一个轴对称图形给出三种不同的方法22.(10分)已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A,B作x轴.y轴的垂线交于点C,如图所示.点P从原点出发,以每秒1个单位长度的速度沿着O→B→C→A的路线移动,运动时间为t秒.(1)写出A,B,C三点的坐标:A,B,C;(2)当t=14秒时,求△OAP的面积.(3)点P在运动过程中,当△OAP的面积为6时,求t的值及点P的坐标.23.(12分)如图,已知,B、E、C、F在同一直线上.(1)若,,求的度数;(2)若,,求BF的长.
参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、D【解题分析】
根据直角三角形的性质及直尺的两边相互平行解答即可.【题目详解】解:如图,∵AB∥CD,
∴∠2=∠3,
∵∠1+∠3=90°,∠1=32°,
∴∠2=∠3=90°-32°=58°.故选D.【题目点拨】本题重点考查了平行线及直角板的性质,是一道较为简单的题目.2、D【解题分析】
全等三角形的对应边相等,据此可得出AB=DE,AC=DF,BC=EF;再根据BC-EC=EF-EC,可得出一组线段相等,据此找出组数,问题可解.【题目详解】∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BC-EC=EF-EC,即BE=CF.故共有四组相等线段.故选D.【题目点拨】本题主要考查全等三角形的性质,全等三角形的对应边相等.3、C【解题分析】
确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【题目详解】A、天空中的一只小鸟,不是有序数对,不能确定物体的位置,故本选项不合题意;
B、电影院中18座,不是有序数对,不能确定物体的位置,故本选项不符合题意;
C、东经120°北纬30°,是有序数对,能确定物体的位置,故本选项符合题意.
D、北偏西35°方向,不是有序数对,不能确定物体的位置,故本选项不合题意;
所以C选项是正确的.【题目点拨】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.4、D【解题分析】
根据单项式乘单项式法则、幂的乘方、同底数幂的除法、积的乘方逐一计算即可判断.【题目详解】解:A、2a3•a2=2a5,错误;B、(﹣a3)2=a6,错误;C、a6÷a2=a4,错误;D、(2a)2=4a2,正确;故选:D.【题目点拨】本题主要考查整式的运算,解题的关键是掌握单项式乘单项式法则、幂的乘方、同底数幂的除法、积的乘方.5、D【解题分析】
根据三角形的中线把一个三角形分成两个面积相等的三角形可判断②;利用SAS可证△BDF≌△CDE;根据全等三角形的性质可知∠ECD=∠FBD,CE=BF,根据平行线的判定定理可得BF∥CE.【题目详解】∵AD是△ABC的中线∴BD=CD,△ABD和△ACD面积相等,故②正确;∵DE=DF,∠BDF=∠CDE∴△BDF≌△CDE(SAS),故①正确;∴∠ECD=∠FBD,CE=BF,故④正确;∴BF∥CE,故③正确;正确的有①②③④,共4个故选D【题目点拨】本题主要考查全等三角形的判定和性质,还涉及了三角形中线和平行线的判定,熟练掌握各个性质定理是解题关键.6、D【解题分析】
直接利用不等式的性质分别判断得出答案.【题目详解】A、∵a<b,∴∴,故错误;B、∵a<b,∴,故错误;C、∵a<b,∴,故错误;D、∵a<b,∴−2a>−2b,故正确;故选:D.【题目点拨】此题主要考查了不等式的性质,正确把握不等式的基本性质是解题关键.7、B【解题分析】
先用含有m的代数式把原不等式组的解集表示出来,由题意不等式的解集为x>1,再根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)来求出m的范围.【题目详解】解:在中
由(1)得,x>1
由(2)得,x>m
根据已知条件,不等式组解集是x>1
根据“同大取大”原则m≤1.
故选B.【题目点拨】本题考查一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求m的范围.8、C【解题分析】
解:∵AB∥CD∥EF,
∴∠ABC=∠BCD=50°,∠CEF+∠ECD=180°;
∴∠ECD=180°-∠CEF=30°,
∴∠BCE=∠BCD-∠ECD=20°.
故选:C.9、B【解题分析】
已知AE平分∠BAC,ED∥AC,根据两直线平行同旁内角互补,可求得∠DEA的度数,再由三角形外角和为360°求得∠BED度数.【题目详解】解:∵AE平分∠BAC
∴∠BAE=∠CAE=36°
∵ED∥AC
∴∠CAE+∠DEA=180°
∴∠DEA=180°-36°=144°
∵∠AED+∠AEB+∠BED=360°
∴∠BED=360°-144°-90°=126°.
故选:B.【题目点拨】考查平行线的性质和三角形外角和定理.两直线平行,同旁内角互补.10、A【解题分析】
利用平行线的性质,三角形的外角性质,全等三角形的性质,三角形的中线,对选项进行判断【题目详解】A.在两条直线相互平行的情况下,同旁内角互补,所以A项错误.B.三角形的一个外角等于与它不相邻的两个内角之和,所以B选项正确C.三角形的中线,平分这个三角形的面积,所以C选项正确D.全等三角形对应角相等,所以D选项正确【题目点拨】本题考查平行线的性质,三角形的外角性质,全等三角形的性质,三角形的中,解题关键在于熟练掌握定义11、C【解题分析】
先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.【题目详解】原式=x2+(1﹣3k)xy﹣3y2﹣8,因为不含xy项,故1﹣3k=0,解得:k.故选:C.【题目点拨】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.12、D【解题分析】
依据平行线的判定定理进行分析,即可得到正确结论.【题目详解】解:如图,由折叠可得,∵∠BPC=∠ADP=90°,∴a∥b,故A选项能作为这种方法的依据;∵∠EPD=∠ADP=90°,∴a∥b,故B选项能作为这种方法的依据;∵∠BPD+∠ADP=180°,∴a∥b,故C选项能作为这种方法的依据;而D选项不能作为这种方法的依据;故选:D.【题目点拨】本题考查的是平行线的判定定理,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行..二、填空题(每题4分,满分20分,将答案填在答题纸上)13、如果在一个三角形中两内角互余,那么这个三角形为直角三角形【解题分析】
将原命题的条件与结论互换即可得到逆命题.【题目详解】解:原命题可改写成如果有一个三角形是直角三角形,那么这个三角形的两锐角互余,将条件与结论互换可得其逆命题为如果在一个三角形中两内角互余,那么这个三角形为直角三角形.故答案为:如果在一个三角形中两内角互余,那么这个三角形为直角三角形【题目点拨】本题考查了逆命题,熟练掌握逆命题与原命题的关系是解题的关键.14、90°﹣m【解题分析】
由对顶角求得∠AEC=m°,由角平分线的定义求得∠2=90°-m,根据平行线的性质即可求得结果.【题目详解】∵∠3=m°,∴∠AEC=m°,∴∠BEC=180°-m°,∵EN平分∠CEB,∴∠2=90°-m,∵FM∥AB,∴∠F=∠2=90°-m,故答案为:90°-m.【题目点拨】本题主要考查了对顶角的定义,角平分线的性质,平行线的性质,熟练掌握平行线的性质是解决问题的关键.15、-1【解题分析】
先根据不等式组有解得k的取值,利用方程有非负整数解,将k的取值代入,找出符合条件的k值,并相加.【题目详解】解:解①得:x≤4k-1,
解②得:x≥5k+2,
∴不等式组的解集为:5k+2≤x≤4k-1,
5k+2≤4k-1,
k≤-3,
解关于x的方程kx=2(x-2)-(3x+2)得,x=,
因为关于x的方程kx=2(x-2)-(3x+2)有非负整数解,
当k=-7时,x=1,当k=-4时,x=2,
当k=-3时,x=3,∴符合条件的所有整数的和为:-7-4-3=-1.
故答案为:-1.【题目点拨】本题考查解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.16、1.【解题分析】∵,∴a-1=0,b-2=0,解得a=1,b=2.①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴1、1、2不能组成三角形.②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=1.17、1【解题分析】
根据题意得出x=y,然后求出x与y的值,再把x、y的值代入方程kx+(k-1)y=6即可得到答案.【题目详解】由题意得:x=y,∴4x+3x=14,∴x=1,y=1,把它代入方程kx+(k-1)y=6得1k+1(k-1)=6,解得k=1.故答案为:1.【题目点拨】本题考查了三元一次方程组的解法.解三元一次方程组的关键是消元.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、A;F;AB;EF;内错角相等,两直线平行(或“ACB;FDE;BC;DE;内错角相等,两直线平行”)【解题分析】
直接利用平行线的判定方法分析即可得出答案.【题目详解】解法1:证明:∵∠A=∠F,∴AB∥EF(内错角相等,两直线平行).解法2:证明:∵∠ACB=∠FDE,∴BC∥DE(内错角相等,两直线平行).故答案为:A;F;AB;EF;内错角相等,两直线平行(或“ACB;FDE;BC;DE;内错角相等,两直线平行”).【题目点拨】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.19、.【解题分析】
首先根据角平分线的性质可得∠ACE=∠DCE,再根据平行线的性质可得∠AEC=∠ECD,∠A+∠ACD=180°,进而得到∠A的度数.【题目详解】解:∵CE平分∠ACD交AB于E,
∴∠ACD=2∠DCE,
∵AB∥CD,∴∠ECD=,
∴∠ACD=56°,
∵AB∥CD,
∴.【题目点拨】此题考查平行线的性质,解题关键是掌握平行线的性质定理.20、(1);(2);(3)或.【解题分析】
(1)由二次根式和绝对值的非负性可得a、b的值,即可知OA、OB的长,继而可得三角形的面积;
(2)设∠PFC=x、∠AFN=y,由角平分线的定义知∠AFN=∠PFN=y、∠CFP=∠GFP=x,∠AFP=2y、∠GFC=2x,根据∠AFP+∠GFC=180°+∠GFP、∠FNB=∠NFP+∠PFC+∠ACB列出关于x、y的方程组,解之求得x,从而得出∠GFC度数,继而由平行线的性质可得答案;(3)过作于,利用面积法求出OG=,设运动时间为秒,由题意可得,,,根据三角形的面积公式列式表示和,由已知可得关于t的方程,解方程即可求解.【题目详解】解:(1)∵,
∴a-6=0且b+8=0,
解得:a=6、b=-8,
∴OA=6、OB=8,
则S△AOB=×OA×OB=×6×8=24;(2)设∠PFC=x、∠AFN=y,
∵FP平分∠GFC,FN平分∠AFP,
∴∠AFN=∠PFN=y、∠CFP=∠GFP=x,∠AFP=2y、∠GFC=2x,
由∠AFP+∠GFC=180°+∠GFP、∠FNB=∠NFP+∠PFC+∠ACB知,
,
整理,得:,
解得:,
则∠GFC=2x=4α-600,
∵GF∥AB,
∴∠BAC=∠GFC=4α-600;(3)过作于,则,设运动时间为秒,由题意得,,,,∴,,∵,∴,∴或,∴或.故答案为:(1);(2);(3)或.【题目点拨】本题考查三角形的面积,非负数性质、角平分线的性质、平行线的性质及三角形外角的性质等知识点,用方程的思想解决问题是解题的关键.21、(1)0(2)见解析【解题分析】
直接利用同底数幂的乘法运算法则以及幂的乘方运算法则分别化简得出答案;直接利用轴对称图形的性质分析得出答案.【题目详解】;如图所示:.【题目点拨】此题主要考查了同底数幂的乘法运算以及幂的乘方运算、轴对称图形,正确掌握相关性质是解题关键.22、(1)A(4,0);B(0,6);C(4,6);(2)△OAP的面积S=4;(3)t=3时,P(0,3);t=13时,P(4,3),都有△OAP的面积为6.【解题分析】
(1)(a-4)2+|b-6|=0,解得a=4,b=6,得出A(4,0),B(0,6),由BC∥x轴,得出点C的纵坐标为:6,由AC∥y轴,得出点C的横坐标为:4,即可得出结果;
(2)四边形OACB是矩形,OB=AC=6、BC=OA=4,当t=14
时,P在AC边上,AP=2,则△OAP的面积=12OA•PA=4;
(3)①当P在OB上时,OP=t,△OAP的面积=12OA•OP=12×4×t=6,则t=3,即OP=3,则P点坐标为(0,3);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 讲述一种材料课件
- 咯血并发症的护理
- 安全五确认培训知识
- 产科围手术护理
- 三位数乘两位数过关自测训练题带答案
- 《汽车业外语》课件
- 安徽省马鞍山市2022届高三下学期第二次教学质量检测(二模)化学试卷
- 医疗行业数据分析
- 大学生恋爱班会活动
- 微课马尔可夫分析法财经管理人力资源管理系副教授
- 【教学课件】少年正是读书时示范课件
- 我是节电小能手课件
- Module 5 Unit 1教案 初中英语 外研版 八年级上册 (2022学年)
- 2022年泰安技师学院教师招聘笔试题库及答案解析
- 人教版九年级下册道德与法治全册教案完整版教学设计含教学反思
- 建筑工程勘察项目-技术标
- 道路运输企业职业安全健康管理工作台帐(全版通用)参考模板范本
- 大马大马告诉我
- TSG 81-2022 场(厂)内专用机动车辆安全技术规程
- 口腔组织病理学教学课件:牙源性肿瘤
- 通用模板-封条模板
评论
0/150
提交评论