




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【精编整理】山东省德州市2021-2022学年中考数学模仿试题(二模)
(原卷版)
一.选一选:本大题共12小题,每小题4分,共48分.
1.16的算术平方根是().
A±4B.4C.-4D.256
2.上面四个手机运用图标中是轴对称图形的是()
AHB卷।C画
D.
3.中国挪动数据C项目近日在高新区正式开工建设,该项目建设规模12.6万平方米,建成后
将成为山东省的数据业务.其中126000用科学记数法表示应为()
A1.26x106B.12.6x104C.0.126x106D.1.26x105
4.如图所示是一个几何体的三视图,这个几何体的名称是()
俯视图
A.圆柱体B.三棱锥C.球体D.圆锥体
5.下列计算中,正确的是()
A.2a+3b=5abB.(3a3)2=6a6C.a6^-a2=a3D.-3a+2a=
-a
6.下列中是必然的是()
第1页/总28页
A.-a是负数B.两个类似图形是位似图形
C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.平移后的图形与原来的图形对应线段
相等
7.当-2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.
①y=2x;②y=2-x;③产---;@y=x2+6x+8.
x
A.1B.2C.3D.4
x-2>l
8.不等式组13,的解集为()
-2x<4
A.x>-2B.-2<x<3C.x>3D.-2<x<3
9.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度v(加)与发掘工夫x(〃)之间
的关系如图所示.根据图象所提供的信息有:①甲队发掘30加时,用了3〃;②发掘6〃时甲队
比乙队多挖了10/n;③乙队的发掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等
时,x=4.其中一定正确的有()
T|(米)
匕60[.......................%甲
0\26x(「时)
A.1个B.2个C.3个D.4个
10.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求
提早5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()
960960「960960960960
A.-----------=5B.——+5c=------C.---------=5rD.
48+x484848+x48x
960960u
------------5
4848+x
11.如图,抛物线y=ax?+bx+c的顶点为B(1,-3),与x轴的一个交点A在(2,0)和(3,0)
之间,下列结论中:①bc>0;②2a+b=0;③a-b+c>0;④a-c=3,正确的有()个
第2页/总28页
C.2D.1
12.如图:在矩形ABCD中,AD=V2AB,/BAD的平分线交BC于点E,DH_LAE于点H,
连接BH并延伸交CD于点F,连接DE交BF于点O,有下列结论:①NAED=NCED;②OE=OD;
③aBEH丝△HDF;®BC-CF=2EH;⑤AB=FH.其中正确的结论有()
A.5个B.4个C.3个D.2个
二、填空题:本大题共6小题,共24分,只填结果,每小题填对得4分.
13.若立亘有意义,则x的取值范围是—.
X-1
14.如图,在A48C中,分别以点A和5为圆心,大于的长为半径画弧,两弧相交于“,
2
N,作直线交BC于点D,连接40.如果BC=5,CD=2,那么工。=;
第3页/总28页
15.设XI、X2是一元二次方程2x2-4x-1=0的两实数根,贝Ijx/+X22的值是.
16.在4张完全相反的卡片上分别画有等边三角形、平行四边形、正方形和圆,从中随机摸出
两张,这两张卡片上的图形都是对称图形的概率是.
17.观察如图给出的四个点阵,请按照图形中的点的个数变化规律,猜想第〃个点阵中的点的
个数为_____个.
18.如图,在R3ABC中,ZACB=90°,AC=BC=2,将RSABC绕点A逆时针旋转30。后得到
R3ADE,点B的路径为弧BD,则图中暗影部分的面积为.
三、解答题:本大题共7小题,共78分.解答要写出必要的文字阐明、证明过
程或演算步骤.
19.先化简,再求值:先化简Xz二2x+l2」一升然后从一2<X〈6的范围内选取一
x2-lx+1
个合适的整数作为x的值代入求值.
20.为了了解青少年形体情况,现随机抽查了某市若干名初中先生坐姿、站姿、走姿的好坏情
况.我们对测评数据作了适当处理(如果一个先生有一种以上不良姿态,以他最突出的一种作
记载),并将统计结果绘制了如下两幅不残缺的统计图,请你根据图中所给信息解答下列成绩:
第4页/总28页
三姿良好人数(人)
15%
1乃
姿
生
坐1
良
不
不50
1”
\
姿
走
一1
入
却
姿
良
不00
乃
良
不
不
3%
5%3050
25
坐姿站姿走姿三姿形像状况
不良不良不良良好
(1)请将两幅统计图补充残缺;
(2)请问这次被抽查形体测评的先生一共是多少人?
(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的先生有多少人?
21.如图所示,一辆单车放在程度的地面上,车把头下方A处与坐垫下方8处在平行于地面的
同一程度线上,A,B之间的距离约为49cm,现测得NC,8c与Z8的夹角分别为45°与68°,
若点C到地面的距离。。为28c加,坐垫中轴£处与点8的距离8E为4cm,求点E到地面的
距离(结果保留一位小数).(参考数据:sin68°«0.93,cos68°«0.37,cot68°«0.40)
22.在中,乙4c8=90°,BE平分NABC,。是边上一点,以8。为直径的
点E,且交8c于点尸.
(1)求证:/C是。。的切线;
(2)若8尸=6,。。的半径为5,求CE的长.
23.如图,已知函数卜=依汁b的图象与x轴交于点月,与反比例函数了=一(x<0)的图象交
X
第5页/总28页
于点8(-2,〃),过点B作8C_Lx轴于点C,点、D(3-3/?,1)是该反比例函数图象上一点.
(1)求加的值;
(2)若/DBC=/ABC,求函数产Ax+6的表达式.
24.成绩背景:如图(1)在四边形ABCD中,NACB=NADB=90°,AD=BD,探求线段AC、BC、CD
之间的数量关系.小明探求此成绩的思绪是:将ABCD绕点D逆时针旋转90°到4AED处,点B、
C分别落在点A、E处(如图(2)),易证点C、A、E在同一条直线上,并且4CDE是等腰直角三
角形,所以CE=J^CD,从而得出结论:AC+BC=72CD.
简单运用:
(1)在图(1)中,若AC=J5,BC=20,求CD的长;
(2)如图(3)AB是00的直径,点C、D在00上,AD=BD,若AB=13,BC=12,求CD的长.
25.如图,已知抛物线A(-2,0),B(-3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、0、D、E为顶点的四边形是平行
四边形,求点D的坐标;
(3)P是抛物线上的象限内的动点,过点P作PMx轴,垂足为M,能否存在点P,使得以P、
M、A为顶点的三角形ABOC类似?若存在,求出点P的坐标;若不存在,请阐明理由.
第6页/总28页
【精编整理】山东省德州市2021-2022学年中考数学模仿试题(二模)
(解析版)
一.选一选:本大题共12小题,每小题4分,共48分.
1.16的算术平方根是().
A.±4B.4C.-4D.256
【答案】B
【解析】
【详解】根据算术平方根的意义,由42=16,
可知16的算术平方根为4.
故选B.
2.上面四个手机运用图标中是轴对称图形的是()
【答案】D
【解析】
【分析】分别根据轴对称图形与对称图形的性质对各选项进行逐一分析即可.
第7页/总28页
【详解】A、既不是轴对称图形,也不是对称图形,故本选项错误;
B、是对称图形,故本选项错误;
C、既不是轴对称图形,也不是对称图形,故本选项错误;
D、是轴对称图形,故本选项正确.
故选D.
【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有性质
的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.
3.中国挪动数据C项目近日在高新区正式开工建设,该项目建设规模12.6万平方米,建成后
将成为山东省的数据业务.其中126000用科学记数法表示应为()
A.1.26x106B.12.6x104C.0.126xl06D.1.26xl05
【答案】D
【解析】
【分析】根据科学记数法的表示方式(axlO",其中lW|a|<10,〃为整数.确定"的值时,要看
把原数变成。时,小数点挪动了多少位,〃的值与小数点挪动的位数相反.当原数值>1时,n
是负数;当原数的值<1时一,〃是负数),即可求解.
【详解】解:126000=1.26x105.
故选D.
4.如图所示是一个几何体的三视图,这个几何体的名称是()
俯视图
A.圆柱体B.三棱锥C.球体D.圆锥体
【答案】A
【解析】
【详解】试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图
形,因此,
第8页/总28页
由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.
5.下列计算中,正确的是()
A.2a+3b=5abB.(3a3)2=6a6C.a6^-a2=a3D.-3a+2a=
-a
【答案】D
【解析】
【详解】试题分析:A、不是同类项,无法计算;B、原式=9a6;C、同底数幕相除,底数不变,
指数相减,原式=/;D、是同类项,能够合并,正确.故答案选D.
考点:.合并同类项;同底数幕的乘除法.
6.下列中是必然的是()
A.-a是负数B.两个类似图形是位似图形
C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.平移后的图形与原来的图形对应线段
相等
【答案】D
【解析】
【详解】分析:根据必然指在一定条件下,一定发生的,可得答案.
详解:A.”是非负数,是随机,故A错误;
B.两个类似图形是位似图形是随机,故B错误;
C.随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机,故C错误;
D.平移后的图形与原来对应线段相等是必然,故D正确;
故选D.
点睛:考查随机,处理本题的关键是正确理解随机,不可能,必然的概念.
7.当-2<xV2时,下列函数中,函数值y随自变量x增大而增大的有()个.
2
①y=2x;②y=2-x;③产---;@y=x2+6x+8.
x
A.1B.2C.3D.4
【答案】B
【解析】
第9页/总28页
【详解】分析:函数当4>0时,函数值y总是随自变量X增大而增大,反比例函数当肚<0时,
在每一个象限内,y随自变量X增大而增大,二次函数根据对称轴及开口方向判断增减性.
详解:①为函数,且时,函数值y总是随自变量X增大而增大;
②为函数,且M0时,函数值y总是随自变量x增大而减小;
③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当-282时,就不能
确定增减性了;
④为二次函数,对称轴为x=-3,开口向上,故当-2代<2时,函数值y随自变量x增大而增大,
符合题意的是①④.
故选B.
点睛:考查了函数,二次函数,反比例函数的增减性,掌握它们的性质是解题的关键.
fx-2>l
8.不等式组《〜,的解集为()
-2x44
A.x>-2B.-2<x<3C.x>3D.-2<x<3
【答案】C
【解
【分析】分别求出两不等式的解集,进而得出它们的公共解集.
解①得:x>3,
解②得:x2-2,
所以不等式组的解集为:x>3.
故选:C.
【点睛】本题考查了一元不等式组的解集,规范解不等式,并精确确定解集是解题的关键.
9.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度vCm)与发掘工夫x(〃)之间
的关系如图所示.根据图象所提供的信息有:①甲队发掘30M时,用了3〃;②发掘6〃时甲队
比乙队多挖了10/«;③乙队的发掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等
时,X=4.其中一定正确的有()
第10页/总28页
TA(米)
二
0\26x(乐时)
A1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】根据函数图象可以判断对错目中的各个小题能否正确,从而可以解答本题.
【详解】由图象可得,
甲队发掘30加时,用的工夫为:30+(60+6)=3〃,故①正确,
发掘6h时甲队比乙队多挖了:60-50=10〃?,故②正确,
前两个小时乙队挖得快,在2小时到6小时之间,甲队挖的快,故③错误,
设0<xK6时,甲对应的函数解析式为产履,
则60=6%,得仁10,
即0Wx<6时,甲对应的函数解析式为尸10x,
当2WxK6时,乙对应的函数解析式为y=ax+b,
2(7+/?=30(a=5
V得>
6a+b=501b=20'
即24x46时,乙对应的函数解析式为产5x+20,
y=10x[x=4
则,得4,
[y=5x+20[y=40
即开挖后甲、乙两队所挖河渠长度相等时,x=4,故④正确,
由上可得,一定正确的是①②④,
故选C.
【点睛】考查函数的运用,待定系数法求函数解析式,函数的交点等.看懂图象是解题的关键.
10.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求
第11页/总28页
提早5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()
960960「960960960960
A.-----------=5B.——+5c=------C.---------=5cD.
48+x4848
960960
5
4848+x
【答案】D
【解析】
—,实践所用的工夫为:网所列方程为:
【详解】解:原来所用的工夫为:
48x+48
960960「岫出
-----------=5.故选D.
48x+48
点睛:本题考查了由实践成绩笼统出分式方程,关键是工夫作为等量关系,根据每天多做x套,
结果提早5天加工完成,可列出方程求解.
11.如图,抛物线y=ax?+bx+c的顶点为B(1,-3),与x轴的一个交点A在⑵0)和(3,0)
之间,下列结论中:①bc>0;②2a+b=0;③a-b+c>0;④a-c=3,正确的有()个
【答案】A
【解析】
【详解】分析:抛物线开口向上介0,对称轴在y轴右侧,b<0,抛物线和y轴负半轴相交,c<0,
则bc>0,由抛物线与x轴有两个交点得从-4ac>0;有抛物线顶点坐标得到抛物线的对称轴
为直线x=l,则得到b=-2a,即可得到2a+6=0;根据抛物线的对称性得抛物线与x轴的另一个
交点8在(0,0)和(-1,0)之间,所以当x=T时,户0,则a—b+c>0;由抛物线的顶点为。(1,-3)
得a+b+c=-3,由抛物线的对称轴为直线x=--邑=1得b=-2a,所以a-c=3.
2a
第12页/总28页
详解::抛物线开口向上,
.,•a>0,
:对称轴在y轴右侧,
>0,
2a
:.b<0,
;抛物线和y轴负半轴相交,
.,.c<0,
・・・庆>0,故①正确;
・・•抛物线的顶点为。(1,-3),
b[
x=----=1,
2a
,b=-2a,
.•.2a+b=0,故②正确;
•・,对称轴为产1,且与x轴的一个交点A在(2,0)和(3,0)之间,
工与x轴的另一个交点B在(0,0)和(一1,0)之间
当x=-l时,y>0,
^•y=a-b+c>0,故③正确;
・・•抛物线的顶点为0(1,-3)
,a+b+c=-3,
:抛物线的对称轴为直线X=—2=1得b=-2a,
2a
把b=~2a代入a+b+c=-3,得Q-2Q+C=-3,
.**c-a=-3,
**.a-c=3,故④正确;
故选A.
点睛:考查二次函数图象与系数的关系,巧妙的对一些式子进行变形得到想要的结论.
12.如图:在矩形ABCD中,AD=J^AB,NBAD的平分线交BC于点E,DH1.AE于点H,
连接BH并延伸交CD于点F,连接DE交BF于点O,有下列结论:①ZAED=ZCED;②OE=OD;
第13页/总28页
③ABEH会ZXHDF;@BC-CF=2EH;©AB=FH.其中正确的结论有()
A.5个B.4个C.3个D.2个
【答案】B
【解析】
【分析】先证明△/8E和是等腰直角三角形,得出4B=4H=DH=DC,得出
ZADE=ZAED,即可得出①正确;先证出OE=CW,同理:OD=OH,得出OE=OD,②正确;
由ASA证出△8E”会得出③正确;过H作HKVBC于K,可知KC=-BC,HK=KE,
2
得出LBC=HK+HE,BC=2HK+2HE=FC+2HE得出④正确.
2
【详解】:四边形4BCD是矩形,
ABAD=Z.ABC=ZC=ZADC=90°,AB=DC,AD//BC,
:.NADE=ZCED,
:NB4O的平分线交BC于点E,
:.ZBAE=ZDAH=45°,
/\ABE和△4D”是等腰直角三角形,
AE=yf2AB,AD=y[2AH,
AD=yf2AB=42AH,
:.AD=AE,AB=AH=DH=DC,
:.NADE=NAED,
:.NAED=NCED,
...①正确;
•/ADAH=AADH=45°,
第14页/总28页
:.ZADE=ZAED=67.5°,
•:NBAE=45°,
:.ZAHB=ZABH=67.5°,
:.ZOHE=67.5°,
NOHE=/AED,
:.OE=OH,
同理:OD=OH,
:.OE=OD,
...②正确;
VZABH=ZAHB=67.5°,
NHBE=NFHD,
在△BE"和△"DF中,
'NHEB=NFDH=45°
<BE=DH
NHBE=ZFHD,
:.△BE"△,£>「(ASA),
③正确;
BC-CF=2HE正确,过〃作HKX.BC于K,
可知KC=LBC,HK=KE,
2
由上知HE=EC,
:.-BC=KE+EC,
2
又KE=HK」FC,HE=EC,
2
-故=BC=HK+HE,BC=2HK+2HE=FC+2HE
2
④正确;
⑤不正确;
故选B.
第15页/总28页
AD
°KEc
【点睛】考查全等三角形的判定与性质,角平分线的性质,矩形的性质,综合性比较强,对
先生综合能力要求较高
二、填空题:本大题共6小题,共24分,只填结果,每小题填对得4分.
13.若叵3有意义,则x的取值范围是
x—1
[答案]x>-3J3.在I
【解析】
【分析】根据二次根式和分式有意义的条件进行求算.
【详解】二次根式有意义的条件是被开方数是非负数:x+3>0^x>-3
分式有意义的条件是分母不为零:x-lxOnx"
的取值范围是:xN—3且XK1
故答案为:X2-3且XK1.
【点睛】本题考查了式子有意义的条件,掌握二次根式有意义的条件是被开方数是非负数、分
式有意义的条件是分母不为零是解题关键.
14.如图,在A48C中,分别以点A和5为圆心,大于的长为半径画弧,两弧相交于M,
2
N,作直线MV,交BC于点D,连接40.如果8c=5,。=2,那么;
【答案】3
第16页/总28页
【解析】
【分析】直接利用基本作图方法得出MN垂直平分AB,进而得出答案.
【详解】由作图步骤可得:MN垂直平分AB,则AD=BD,
VBC=5,CD=2,
BD=AD=BC-CD=5-2=3.
故答案为3.
【点睛】此题考查基本作图,正确得出MN垂直平分AB是解题关键.
15.设XI、X2是一元二次方程2x2-4X-1=0的两实数根,则XP+X22的值是—
【答案】5
【解析】
【详解】分析:根据根与系数的关系可得出芭+々=2、一;,
将其代入X:+々2=(玉一中即可求出结论.
详解::x,,x2是一元二次方程2x2-4x-l=0的两实数根,
故答案为5.
点睛:考查一元二次方程根与系数的关系,掌握两根之和,两根之积公式是解题的关键.
16.在4张完全相反的卡片上分别画有等边三角形、平行四边形、正方形和圆,从中随机摸出
两张,这两张卡片上的图形都是对称图形的概率是.
【答案】v
2
【解析】
【详解】分析:画树状图写出一切的情况,根据概率的求法计算概率.
详解:平行四边形、正方形和圆是对称图形.
用/、B、C、。分别表示等边三角形、平行四边形、正方形、圆,
画树状图如下:
第17页/总28页
ABCD
/K/N/1\/(\
BCDACDABDACB
共有12种等可能的结果数,其中抽到的卡片上印有的图案都是对称图形有6种.
所以抽到的卡片上印有的图案都是对称图形的概率为:—
122
故答案为:—.
2
点睛:考查概率的计算,明确概率的意义时解题的关键,概率等于所求情况数与总情况数的比.
17.观察如图给出的四个点阵,请按照图形中的点的个数变化规律,猜想第〃个点阵中的点的
个数为个.
【答案】4〃-3##-3+4〃
【解析】
【分析】根据所给的数据,不难发现:个数是1,后边是依次加4,则第〃个点阵中的点的个数
是1+4(M-1)=4"-3,从而可得答案.
【详解】解:•••第1个点阵中的点的个数1,
第2个点阵中的点的个数1+4,
第3个点阵中的点的个数1+4x2=9,
第4个点阵中的点的个数1+4x3=13,
.•.第n个点阵中的点的个数是1+4(n-1)=4«-3.
故答案为:4M-3.
【点睛】本题考查了规律型图形的变化类,经过从一些的图形变化中发现不变的因数或按规律
变化的因数,然后推行到普通情况.
18.如图,在RtAABC中,ZACB=90°,AC=BC=2,将R3ABC绕点A逆时针旋转30。后得到
RSADE,点B的路径为弧BD,则图中暗影部分的面积为
第18页/总28页
E
CD
月黑工----------------------
【答案】y
【解析】
【详解】【分析】先根据勾股定理得到AB=2,5,再根据扇形的面积公式计算出S联ABD,由旋
转的性质得到RtAADE=RtAACB>于是S*彭祁分=SAADE+S-SAABC=S1舷ABD.
【详解】VZACB=90°,AC=BC=2,
AB=2y/2,
2
_30^-x(2V2)27r
••SaifiABD=_____\/—z__,
360—3
又:RtAABC绕A点逆时针旋转30。后得到RtAADE,
••RtAADE=RtAACB,
・__2万
S暗影部分=$4人口£+$项形ABD-SAABC=S扇形ABD=,
故答案为手.
【点睛】本题考查了旋转的性质、扇形面积的计算,得到S电黝吩=S皿ABD是解题的关键.
三、解答题:本大题共7小题,共78分.解答要写出必要的文字阐明、证明过
程或演算步骤.
19.先化简,再求值:先化简x:2x+l%士1-"I),然后从-2<x〈石的范围内选取一
x2-lx+1
个合适的整数作为X的值代入求值.
【答案】--,—-.
x2
【解析】
【分析】根据分式的减法和除法可以化简标题中的式子,然后在一2<xV店中选取一个使得
第19页/总28页
原分式有意义的整数值代入化简后的式子即可求出答案,值得留意的是,本题答案不,X的值
可以取一2、2中的任意一个.
(x-1)2x-1—(x-l)(x+l)x-1x+1x-1_1
【详解】原式=
(x+l)(x-l)x+1x+1x-l-x2+l-X(x-1)X
2<x<加(x为整数)且分式要有意义,所以x+l,O,x-1/O,#0,即今一1,1,0,因此可
以选取x=2时,此时原式=一《.
【点睛】本题次要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,
从而再选取x=2得到答案.
20.为了了解青少年形体情况,现随机抽查了某市若干名初中先生坐姿、站姿、走姿的好坏情
况.我们对测评数据作了适当处理(如果一个先生有一种以上不良姿态,以他最突出的一种作
记载),并将统计结果绘制了如下两幅不残缺的统计图,请你根据图中所给信息解答下列成绩:
三姿良好ASK(人)
(1)请将两幅统计图补充残缺;
(2)请问这次被抽查形体测评的先生一共是多少人?
(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的先生有多少人?
【答案】(1)补图见解析;(2)500名;(3)2.5万人
【解析】
【详解】(1)坐姿不良所占的百分比为:1-30%-35%-15%=20%,
被抽查的先生总人数为:100+20%=500名,
站姿不良的先生人数:500*30%=150名,
三姿良好的先生人数:500xi5%=75名,
第20页/总28页
补全统计图如图所示;
(2)10020%=500(名),
答:这次被抽查形体测评的先生一共是500名;
(3)5万x(20%+30%)=2.5万,
答:全市初中生中,坐姿和站姿不良的先生有2.5万人
21.如图所示,一辆单车放在程度的地面上,车把头下方A处与坐垫下方8处在平行于地面的
同一程度线上,A,8之间的距离约为49cm,现测得/C,8c与N8的夹角分别为45。与68。,
若点C到地面的距离CD为28CM,坐垫中轴£处与点5的距离8E为4cm,求点E到地面的
距离(结果保留一位小数).(参考数据:sin68°»0.93,cos68°*0.37,cot68°*0.40)
【答案】66.7cm
【解析】
【分析】过点C作CHAB于点H,过点E作EF垂直于AB延伸线于点F,设CH=x,则AH=CH=x,
BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解之求得CH的长,再由EF=BEsin68o=3.72根据
点E到地面的距离为CH+CD+EF可得答案.
【详解】如图,过点C作CH_LAB于点H,过点E作EF垂直于AB延伸线于点F,
设CH=x,则AH=CH=x,
BH=CHcot680=0.4x,
第21页/总28页
由AB=49得x+0.4x=49,
解得:x=35,
VBE=4,
;.EF=BEsin68°=3.72,
则点E到地面的距离为CH+CD+EF=35+28+3.72x66.7(cm),
答:点E到地面的距离约为66.7cm.
【点睛】本题考查解直角三角形的实践运用,构造直角三角形,利用已知角度的三角函数值是
解题的关键.
22.在RtZ\N8C中,ZACB=90a,BE平分NABC,。是边上一点,以8。为直径的。。
点E,且交3C于点F.
(1)求证:NC是。。的切线;
(2)若8F=6,。。的半径为5,求CE的长.
【答案】(1)详见解析;(2)4
【解析】
【分析】(1)首先利用等腰三角形的性质和角平分线的定义得出然后得出
OE//BC,则有NO£>1=N/CB=90。,则结论可证.
(2)连接OE、OF,过点。作OHLBF交BF于H,首先证明四边形OHCE是矩形,则有OH=CE,
然后利用等腰三角形的性质求出BH的长度,再利用勾股定理即可求出0H的长度,则答案可
求.
【详解】(1)证明:连接0E.
第22页/总28页
:.ZOBE=ZOEB.
〈BE平分N/8C,
:・NOBE=NEBC,
:./EBC=/()EB,
:.OE//BC,
:.ZOEA=ZACB.
*.*N/CB=90。,
:.ZOEA=90°
,力C是G)O的切线;
(2)解:连接OE、OF,过点、。作OHLBF交BF于H,
.\OHC=90。.
•・•OHC=ZACB=ZOEC=90°
・・・四边形OEC”为矩形,
:.OH=CE.
•:OB=OFQHLBF,BF=6,
第23页/总28页
:.BH=3.
在Rt△班70中,08=5,
:.OH=-32=4'
:.CE=4.
【点睛】本题次要考查切线的判定,等腰三角形的性质,矩形的性质,勾股定理,掌握切线的
判定,等腰三角形的性质,矩形的性质,勾股定理是解题的关键.
23.如图,已知函数严履+b的图象与x轴交于点力,与反比例函数y=—(x<0)的图象交于
x
点8(-2,〃),过点6作轴于点C,点。(3-3〃,1)是该反比例函数图象上一点.
(1)求的值;
(2)若NDBC=/ABC,求函数尸Ax+b的表达式.
【答案】(1)-6;(2)y-......x+2.
2
【解析】
m
【分析】(1)由点8(-2,〃)、。(3-3H,1)在反比例函数y=—(x<0)的图象上可得-
x
2〃=3-3〃,即可得出答案;
(2)由(1)得出8、。的坐标,作延伸DE交AB于点、F,证ADBEgLFBE得DE=FE=4,
即可知点尸(2,1),再利用待定系数法求解可得.
m
【详解】解:(1)♦:煎B(-2,〃)、。(3-3〃,1)在反比例函数y=—(x<0)的图象上,
x
[-2n=mf〃=3
・•・,解得:;
[3-3n=m[m=-o
(2)由(1)知反比例函数解析式为y=-9,;"=3,...点8(-2,3)、。(-6,1),
x
如图,过点。作DELL3C于点E,延伸。E•交于点尸,
第24页/总28页
在△O8E和△必E中,•:NDBE=NFBE,BE=BE,NBED=NBEF=9Q°,
:.XDBE妾XFBE(ASA),:.DE=FE=4,
:.点F(2,1),将点8(-2,3)、F(2,1)代入尸fcv+6,
—Ik+b=3
,解得:,~2,
2k+b=l
b2
【点睛】本题次要考查了反比例函数与函数的综合成绩,解题的关键是能借助全等三角形确定
一些相关线段的长.
24.成绩背景:如图(1)在四边形ABCD中,ZACB=ZADB=90°,AD=BD,探求线段AC、BC、CD
之间的数量关系.小明探求此成绩的思绪是:将aBCD绕点D逆时针旋转90°到4AED处,点B、
C分别落在点A、E处(如图(2)),易证点C、A、E在同一条直线上,并且4CDE是等腰直角三
角形,所以CE=0CD,从而得出结论:AC+BC=V2CD.
简单运用:
(1)在图(1)中,若AC=J5,BC=2后,求CD的长;
(2)如图(3)AB是00
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废物处理与回收合同书
- 农村土地承包合同管理与风险防控
- 教师劳动合同
- 标准域名转让合同书范本
- 挖机租赁业务合同
- 小额借款合同示例
- 粮食储备库租赁合同标准文本
- 家庭护理保姆服务合同细则
- 木材加工企业的设备更新与技术改造考核试卷
- 木制品三维建模与虚拟现实考核试卷
- 2024山东能源集团中级人才库选拔【重点基础提升】模拟试题(共500题)附带答案详解
- 油田设备租赁行业市场现状供需分析及市场深度研究发展前景及规划行业投资战略研究报告(2024-2030)
- 中国古典风格设计
- 市政综合项目工程竣工项目验收总结报告自评
- GB/T 22919.8-2024水产配合饲料第8部分:巴沙鱼配合饲料
- T-BJCC 1003-2024 首店、首发活动、首发中心界定标准
- 网络营销推广与策划教学大纲
- 北师大版五年级数学下册教材分析解读课件完整版
- 园区宣传方案
- 孩子你是在为自己读书
- 施工现场场容场貌
评论
0/150
提交评论