




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本套试卷的知识点:集合与简易逻辑基本初等函数数列三角函数平面向量不等式空间几何体圆锥曲线与方程导数及其应用概率统计第I卷(选择题)1.命题“∃x0∈(0,+∞),lnx0=x0﹣1”的否定是()A.∃x0∈(0,+∞),lnx0≠x0﹣1 B.∃x0∉(0,+∞),lnx0=x0﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣12.已知向量,向量,若,则为()A.(-2,2) B.(-6,3)C.(2,-1) D.(6,-3)3.在三角形ABC中,如果(a+b+c)(b+c﹣a)=3bc,那么A等于()A.30° B.60° C.120° D.150°4.如图,在斜三棱柱ABC﹣A1B1C1的底面△ABC中,∠BAC=90°,且BC1⊥AC,过C1作C1H⊥底面ABC,垂足为H,则点H在()A.直线AC上 B.直线AB上 C.直线BC上 D.△ABC内部5.某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.76.已知随机变量服从正态分布,若,则A. B. C. D.7.设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为()A.11 B.10 C.9 D.8.58.在的展开式中的的系数为()A.210B.-210C.-960 D.2809.已知点A(﹣1,0)、B(1,0),P(x0,y0)是直线y=x+2上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是()A.e与x0一一对应 B.函数e(x0)无最小值,有最大值C.函数e(x0)是增函数 D.函数e(x0)有最小值,无最大值10.方程的根,∈Z,则=()A.2B.3C.4D.5第II卷(非选择题)11.已知a>b,且ab=1,则的最小值是.12.等差数列{an},{bn}的前n项和分别为Sn、Tn,若=,则=.13.(2016新课标高考题)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=.14.下列命题中,正确命题的个数是()①命题“∃x∈R,使得x3+1<0”的否定是““∀x∈R,都有x3+1>0”.②双曲线﹣=1(a>0,a>0)中,F为右焦点,A为左顶点,点B(0,b)且=0,则此双曲线的离心率为.③在△ABC中,若角A、B、C的对边为a、b、c,若cos2B+cosB+cos(A﹣C)=1,则a、c、b成等比数列.④已知,是夹角为120°的单位向量,则向量λ+与﹣2垂直的充要条件是λ=.A.1个 B.2个 C.3个 D.4个15.设Sn是数列[an}的前n项和,.(1)求{an}的通项;(2)设bn=,求数列{bn}的前n项和Tn.16.已知抛物线C的顶点为坐标原点,焦点为F(0,1),(1)求抛物线C的方程;(2)过点F作直线l交抛物线于A,B两点,若直线AO,BO分别与直线y=x﹣2交于M,N两点,求|MN|的取值范围.17.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
【KS5U】2015-2016下学期高二数学暑假作业六试卷答案1.C【考点】命题的否定.【专题】简易逻辑.【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀x∈(0,+∞),lnx≠x﹣1,故选:C【点评】本题主要考查含有量词的命题的否定,比较基础.2.B3.B【考点】余弦定理.【专题】计算题.【分析】利用余弦定理表示出cosA,将已知的等式整理后代入求出cosA的值,由A的范围,利用特殊角的三角函数值即可求出A的度数.【解答】解:由(a+b+c)(b+c﹣a)=3bc,变形得:(b+c)2﹣a2=3bc,整理得:b2+c2﹣a2=bc,∴由余弦定理得:cosA==,又A为三角形的内角则A=60°.故选B【点评】此题考查了余弦定理,利用了整体代入的思想,余弦定理很好的建立了三角形的边角关系,熟练掌握余弦定理是解本题的关键.4.B【考点】直线与平面垂直的判定.【专题】空间位置关系与距离.【分析】由条件,根据线面垂直的判定定理,AC⊥平面ABC1,又AC在平面ABC内,根据面面垂直的判定定理,平面ABC⊥平面ABC1,则根据面面垂直的性质,在平面ABC1内一点C1向平面ABC作垂线,垂足必落在交线AB上.【解答】解:如图:∵∠BAC=90°,∴AC⊥AB,∵BC1⊥AC,∴AC⊥BC1,而BC1、AB为平面ABC1的两条相交直线,根据线面垂直的判定定理,AC⊥平面ABC1,又AC在平面ABC内,根据面面垂直的判定定理,平面ABC⊥平面ABC1,则根据面面垂直的性质,在平面ABC1内一点C1向平面ABC作垂线,垂足必落在交线AB上.故选:B【点评】本题主要考查空间中线面垂直、面面垂直的判定定理与性质定理,属于中档题.5.A【考点】程序框图.【专题】算法和程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是计算满足S=≥100的最小项数【解答】解:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环SK循环前/00第一圈是11第二圈是32第三圈是113第四圈是20594第五圈否∴最终输出结果k=4故答案为A【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.6.C7.B【考点】二元一次不等式(组)与平面区域.【专题】不等式的解法及应用.【分析】首先做出可行域,将目标函数转化为,求z的最大值,只需求直线l:在y轴上截距最大即可.【解答】解:做出可行域如图所示:将目标函数转化为,欲求z的最大值,只需求直线l:在y轴上的截距的最大值即可.作出直线l0:,将直线l0平行移动,得到一系列的平行直线当直线经过点A时在y轴上的截距最大,此时z最大.由可求得A(3,1),将A点坐标代入z=2x+3y+1解得z的最大值为2×3+3×1+1=10故选B【点评】本题考查线性规划问题,考查数形集合思想解题,属基本题型的考查.8.C9.B【考点】椭圆的简单性质.【专题】计算题.【分析】由题意可得c=1,椭圆离心率e=,由椭圆的定义可得PA+PB=2a,a=,再由PA+PB有最小值而没有最大值,从而得出结论.【解答】解:由题意可得c=1,椭圆离心率e==.故当a取最大值时e取最小,a取最小值时e取最大.由椭圆的定义可得PA+PB=2a,a=.由于PA+PB有最小值而没有最大值,即a有最小值而没有最大值,故椭圆离心率e有最大值而没有最小值,故B正确,且D不正确.当直线y=x+2和椭圆相交时,这两个交点到A、B两点的距离之和相等,都等于2a,故这两个交点对应的离心率e相同,故A不正确.由于当x0的取值趋于负无穷大时,PA+PB=2a趋于正无穷大;而当当x0的取值趋于正无穷大时,PA+PB=2a也趋于正无穷大,故函数e(x0)不是增函数,故C不正确.故选B.【点评】本题主要考查椭圆的定义、以及简单性质的应用,属于中档题.10.B11.2【考点】基本不等式.【专题】不等式的解法及应用.【分析】将条件进行整理,然后利用基本不等式的解法即可得到结论.【解答】解:∵ab=1,a>b,∴==a﹣b+,当且仅当a﹣b=,即a﹣b=时取等号,故的最小值是2,故答案为:2【点评】本题主要考查基本不等式的应用,将条件转化为基本不等式的形式是解决本题的关键.12.【考点】等差数列的性质.【专题】计算题.【分析】本题考查的知识点是等差数列的性质及等差数列的前n项和,由等差数列中S2n﹣1=(2n﹣1)•an,我们可得,,则=,代入若=,即可得到答案.【解答】解:∵在等差数列中S2n﹣1=(2n﹣1)•an,∴,,则=,又∵=,∴=即=故答案为:【点评】在等差数列中,S2n﹣1=(2n﹣1)•an,即中间项的值,等于所有项值的平均数,这是等差数列常用性质之一,希望大家牢固掌握.13.【答案】【解析】试题分析:由,得,所以,解得.考点:向量的数量积及坐标运算14.B【考点】命题的真假判断与应用.【专题】综合题.【分析】①利用命题的否定,即可判断其真假;②利用双曲线的离心率的性质可判断其正误,③将cosB=﹣cos(A+C)代入已知,整理可得sinAsinC=sin2B,再利用正弦定理可判断③的正误;④利用向量的坐标运算与向量垂直的性质可判断其正误.【解答】解:①命题“∃x∈R,使得x3+1<0”的否定是““∃x0∈R,使得+1≥0”,故①错误;②,依题意,F(c,0),A(﹣a,0),∵点B(0,b),∴=(a,b),=(c,﹣b),∵•=0,∴ac﹣b2=0,而b2=c2﹣a2,∴c2﹣ac﹣a2=0,两端同除以a2得:e2﹣e﹣1=0,解得e=或e=(舍去),故②正确;③,在△ABC中,∵A+B+C=180°,∴cosB=﹣cos(A+C),∴原式化为:cos2B﹣cos(A+C)+cos(A﹣C)=1,∴cos(A﹣C)﹣cos(A+C)=1﹣cos2B,∵cos(A﹣C)﹣cos(A+C)=2sinAsinC,1﹣cos2B=2sin2B,∴sinAsinC=sin2B,由正弦定理得:b2=ac,故③a、c、b成等比数列错误;④,∵,是夹角为120°的单位向量,∴(λ+)⊥(﹣2)⇔(λ+)•(﹣2)=0⇔λ﹣2+(1﹣2λ)•=0⇔λ﹣2+(1﹣2λ)×1×1×(﹣)=0⇔2λ﹣2﹣=0,∴λ=.故④正确;综上所述,正确命题的个数是2个.故选B.【点评】本题考查命题的真假判断与应用,着重考查命题的否定,向量的坐标运算,考查余弦定理与正弦定理的综合应用,考查双曲线的性质,综合性强,属于难题.15.【考点】数列递推式;数列的求和.【专题】计算题.【分析】(1)由条件可得n≥2时,,整理可得,故数列{}是以2为公差的等差数列,其首项为,由此求得sn.再由求出{an}的通项公式.(2)由(1)知,,用裂项法求出数列{bn}的前n项和Tn.【解答】解:(1)∵,∴n≥2时,,展开化简整理得,Sn﹣1﹣Sn=2Sn﹣1Sn,∴,∴数列{}是以2为公差的等差数列,其首项为.∴,.由已知条件可得.(2)由于,∴数列{bn}的前n项和,∴.【点评】本题主要考查根据递推关系求数列的通项公式,等差关系的确定,用裂项法对数列进行求和,属于中档题.16.【考点】直线与圆锥曲线的关系;抛物线的标准方程.【专题】方程思想;设而不求法;直线与圆;圆锥曲线的定义、性质与方程.【分析】(1)设抛物线的方程为x2=2py,由题意可得p=2,进而得到抛物线的方程;(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,代入抛物线方程,运用韦达定理,求得M,N的横坐标,运用弦长公式,化简整理,即可得到所求范围.【解答】解:(1)由题意可设抛物线的方程为x2=2py,由焦点为F(0,1),可得=1,即p=2,则抛物线的方程为x2=4y;(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,代入x2=4y,得x2﹣4kx﹣4=0,x1+x2=4k,x1x2=﹣4,,由y=x﹣2和y=x联立,得,同理,所以=,令4k﹣3=t,t≠0,则,则,则所求范围为.【点评】本题考查抛物线的方程的求法,注意运用待定系数法,考查直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查化简整理的能力,属于中档题.17.【考点】用空间向量求平面间的夹角;空间向量的夹角与距离求解公式.【专题】空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教育行业数字化教材在在线教育中的市场分析报告
- 2025年工业互联网平台量子通信技术在智能电网调度中的应用研究报告
- 跨文化交流能力在2025年国际化教育中的跨文化教育发展
- 短视频行业内容监管与平台内容生态建设报告
- 2025年重庆市中考历史真题(原卷版)
- 卫生院内部采购管理制度
- 景区售票部门管理制度
- 县硬笔书法协会管理制度
- 公司账目及资金管理制度
- 景区营销培训管理制度
- 2024年黄冈团风县招聘城区社区工作者真题
- 2025年山东省高考历史试卷真题
- 2025图解《政务数据共享条例》V1.0学习解读
- 2025电商平台店铺转让合同模板
- 2025年人教版(2024)初中英语七年级下册期末考试测试卷及答案
- (2025)事业编考试题库(附含答案)
- 女性美学课堂企业制定与实施新质生产力项目商业计划书
- 高端私人定制服务方案
- 2025年保密知识竞赛考试题库300题(含答案)
- 部编版2024-2025学年四年级下册语文期末测试卷(含答案)
- 2025年医保政策考试题库及答案:基础解读与医保政策法规试题试卷
评论
0/150
提交评论