2024届云南省玉溪市峨山彝族自治县一中数学高二第二学期期末联考试题含解析_第1页
2024届云南省玉溪市峨山彝族自治县一中数学高二第二学期期末联考试题含解析_第2页
2024届云南省玉溪市峨山彝族自治县一中数学高二第二学期期末联考试题含解析_第3页
2024届云南省玉溪市峨山彝族自治县一中数学高二第二学期期末联考试题含解析_第4页
2024届云南省玉溪市峨山彝族自治县一中数学高二第二学期期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省玉溪市峨山彝族自治县一中数学高二第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在三棱锥中,点D是棱的中点,若,,,则等于()A. B. C. D.2.已知函数,且对任意的,都有恒成立,则的最大值为()A. B. C. D.3.一个袋子中有4个红球,2个白球,若从中任取2个球,则这2个球中有白球的概率是A. B. C. D.4.已知,则中()A.至少有一个不小于1 B.至少有一个不大于1C.都不大于1 D.都不小于15.命题“∀n∈N*,f(n)∈NA.∀n∈N*B.∀n∈N*C.∃n0D.∃n06.设是虚数单位,则的值为()A. B. C. D.7.已知函数的部分图象如图所示,则()A. B. C. D.8.某同学通过英语听力测试的概率为,他连续测试次,要保证他至少有一次通过的概率大于,那么的最小值是()A. B. C. D.9.若,则下列结论正确的是()A. B. C. D.10.以下四个命题中是真命题的是()A.对分类变量x与y的随机变量观测值k来说,k越小,判断“x与y有关系”的把握程度越大B.两个随机变量的线性相关性越强,相关系数的绝对值越接近于0C.若数据的方差为1,则的方差为2D.在回归分析中,可用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好11.过双曲线的一个焦点作垂直于实轴的直线,交双曲线于,是另一焦点,若,则双曲线的离心率等于()A. B. C. D.12.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为A.100 B.200 C.300 D.400二、填空题:本题共4小题,每小题5分,共20分。13.将极坐标化成直角坐标为_________.14.已知随机变量,且,,则_______.15.若展开式中的第7项是常数项,则n的值为______.16.在的展开式中的所有的整数次幂项的系数之和为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处的切线方程为.(Ⅰ)求的单调区间:(Ⅱ)关于的方程在范围内有两个解,求的取值范围.18.(12分)已知函数f(x)=ln(ax)+bx在点(1,f(1))处的切线是y=0;(I)求函数f(x)的极值;(II)当恒成立时,求实数m的取值范围(e为自然对数的底数)19.(12分)已知(1)求及的值;(2)求证:(),并求的值.(3)求的值.20.(12分)如图,在三棱锥中,,为的中点,平面,垂足落在线段上,为的重心,已知,,,.(1)证明:平面;(2)求异面直线与所成角的余弦值;(3)设点在线段上,使得,试确定的值,使得二面角为直二面角.21.(12分)在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.(1)求y关于t的线性回归方程;(2)预测该地区2016年的居民人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:,22.(10分)某中学高中毕业班的三名同学甲、乙、丙参加某大学的自主招生考核,在本次考核中只有合格和优秀两个等次.若考核为合格,则给予分的降分资格;若考核为优秀,则给予分的降分资格.假设甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.(1)求在这次考核中,甲、乙、丙三名同学中至少有一名考核为优秀的概率;(2)记在这次考核中,甲、乙、丙三名同学所得降分之和为随机变量,请写出所有可能的取值,并求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

利用向量的三角形法则,表示所求向量,化简求解即可.【题目详解】解:由题意在三棱锥中,点是棱的中点,若,,,可知:,,,.故选:.【题目点拨】本题考查向量的三角形法则,空间向量与平面向量的转化,属于基础题.2、B【解题分析】

先求出导函数,再分别讨论,,的情况,从而得出的最大值【题目详解】由题可得:;(1)当时,则,由于,所以不可能恒大于等于零;(2)当时,则在恒成立,则函数在上单调递增,当时,,故不可能恒有;(3)当时,令,解得:,令,解得:,令,解得:,故在上单调递减,在上单调递增,则,对任意的,都有恒成立,即,得,所以;先求的最大值:由,令,解得:,令,解得:,令,解得,则在上所以单调递增,在上单调递减,所以;所以的最大值为;综述所述,的最大值为;故答案选B【题目点拨】本题考查函数的单调性,导数的应用,渗透了分类讨论思想,属于中档题。3、B【解题分析】

先计算从中任取2个球的基本事件总数,然后计算这2个球中有白球包含的基本事件个数,由此能求出这2个球中有白球的概率.【题目详解】解:一个袋子中有4个红球,2个白球,将4红球编号为1,2,3,4;2个白球编号为5,1.从中任取2个球,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,1},{2,3},{2,4},{2,5},{2,1},{3,4},{3,5},{3,1},{4,5},{4,1},{5,1},共15个,而且这些基本事件的出现是等可能的.用A表示“两个球中有白球”这一事件,则A包含的基本事件有:{1,5},{1,1},{2,5},{2,1},{3,5},{3,1},{4,5},{4,1},{5,1}共9个,这2个球中有白球的概率是.故选B.【题目点拨】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.4、B【解题分析】

用反证法证明,假设同时大于,推出矛盾得出结果【题目详解】假设,,,三式相乘得,由,所以,同理,,则与矛盾,即假设不成立,所以不能同时大于,所以至少有一个不大于,故选【题目点拨】本题考查的是用反证法证明数学命题,把要证的结论进行否定,在此基础上推出矛盾,是解题的关键,同时还运用了基本不等式,本题较为综合5、D【解题分析】

根据全称命题的否定是特称命题,可知命题“∀n∈N*,fn∈N故选D.考点:命题的否定6、B【解题分析】

利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【题目详解】解:设,可得:,则,,可得:,可得:,故选:B.【题目点拨】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.7、C【解题分析】

根据图像最低点求得,根据函数图像上两个特殊点求得的值,由此求得函数解析式,进而求得的值.【题目详解】根据图像可知,函数图像最低点为,故,所以,将点代入解析式得,解得,故,所以,故选C.【题目点拨】本小题主要考查根据三角函数图象求三角函数解析式,并求三角函数值,属于中档题.8、B【解题分析】

由题意利用次独立试验中恰好发生次的概率计算公式以及对立事件发生的概率即可求得结果.【题目详解】由题意可得,,求得,∴,故选B.【题目点拨】本题主要考查次独立试验中恰好发生次的概率计算公式的应用,属于基础题.9、C【解题分析】

先用作为分段点,找到小于和大于的数.然后利用次方的方法比较大小.【题目详解】易得,而,故,所以本小题选C.【题目点拨】本小题主要考查指数式和对数式比较大小,考查指数函数和对数函数的性质,属于基础题.10、D【解题分析】

依据线性相关及相关指数的有关知识可以推断,即可得到答案.【题目详解】依据线性相关及相关指数的有关知识可以推断,选项D是正确的.【题目点拨】本题主要考查了线性相指数的知识及其应用,其中解答中熟记相关指数的概念和相关指数与相关性之间的关系是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11、B【解题分析】

根据对称性知是以点为直角顶点,且,可得,利用双曲线的定义得出,再利用锐角三角函数的定义可求出双曲线的离心率的值.【题目详解】由双曲线的对称性可知,是以点为直角顶点,且,则,由双曲线的定义可得,在中,,,故选B.【题目点拨】本题考查双曲线的离心率的求解,要充分研究双曲线的几何性质,在遇到焦点时,善于利用双曲线的定义来求解,考查逻辑推理能力和计算能力,属于中等题.12、B【解题分析】

试题分析:设没有发芽的种子数为,则,,所以考点:二项分布【方法点睛】一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

试题分析:由题意得,,所以直角坐标为故答案为:考点:极坐标与直角坐标的互化.14、【解题分析】

利用随机变量,关于对称,结合已知求出结果【题目详解】随机变量满足,图象关于对称,则故答案为【题目点拨】本题考查了正态分布,由正态分布的对称性即可计算出结果15、【解题分析】

利用二项展开式得出第七项x的指数,利用指数为零,求出的值.【题目详解】解:的展开式的第七项为,由于第七项为常数项,则,解得,故答案为:1.【题目点拨】本题考查二项式定理,考查对公式的理解与应用,属于基础题.16、122【解题分析】分析:根据二项式定理的通项公式,写出所有的整数次幂项的系数,再求和即可。详解:所以整数次幂项为为整数是,所以系数之和为122点睛:项式定理中的具体某一项时,写出通项的表达式,使其满足题目设置的条件。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)函数单调递减区间为,单调递增区间为;(Ⅱ).【解题分析】

(Ⅰ)根据,,可解出,再求导判断即可.(Ⅱ)由(I)可知在单调递减,在单调递增.,,画出草图即可得出答案.【题目详解】解:(I)函数,则且.因为函数在处的切线方程为,所以则,则.所以,.当时故为单调递减,当时故为单调递增.所以函数单调递减区间为,单调递增区间为.(II)因为方程在范围内有两个解,所以与在又两个交点由(I)可知在单调递减,在单调递增.所以在有极小值为,且.又因为当趋于正无穷大时,也趋于正无穷大.所以.【题目点拨】本题考查根据函数的切线方程求函数的单调区间,根据函数的零点个数求参数的取值范围,属于中档题.18、(1)的极大值为,无极小值;(2).【解题分析】分析:(1)先根据导数几何意义得解得b,再根据得a,根据导函数零点确定单调区间,根据单调区间确定极值,(2)先化简不等式为,再分别求左右两个函数最值得左边最小值与右边最大值同时取到,则不等式转化为,解得实数m的取值范围.详解:(1)因为,所以因为点处的切线是,所以,且所以,即所以,所以在上递增,在上递减,所以的极大值为,无极小值(2)当恒成立时,由(1),即恒成立,设,则,,又因为,所以当时,;当时,.所以在上单调递减,在上单调递增,;在上单调递增,在上单调递减,.所以均在处取得最值,所以要使恒成立,只需,即解得,又,所以实数的取值范围是.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.19、(1);(2)见解析;(3).【解题分析】

(1)用赋值法可求解,令可求得,令可求得.(2)左边用阶乘展开可证.再由己证式结合裂项求和,可求解(3)法一:先证公式再用公式化简可求值.法二:将两边求导,再赋值x=1和x=-1可求解.【题目详解】(1)当时,(*)在(*)中,令得在(*)中,令得,所以(2)证明:因为,由二项式定理可得所以因为,所以(3)法一:由(2)知因为,所以+则,所以法二:将两边求导,得令得;①令得.②①②得解得,所以.【题目点拨】本题考查二项式定理中的赋值法求值问题,这是解决与二项式定理展开式中系数求和中的常用方法.20、(1)证明见解析;(2);(3).【解题分析】

(1)方法一:由重心的性质得出,再由,结合相似三角形的性质得出,再利用直线与平面平行的判定定理得出平面;方法二:以为原点,以射线为轴的正半轴,建立空间直角坐标系,利用重心的坐标公式计算出点的坐标,可计算出,可证明出,再利用直线与平面平行的判定定理得出平面;(2)计算出和,利用向量的坐标运算计算出,即可得出异面直线与所成角的余弦值;(3)由,得出,可求出的坐标,然后可计算出平面(即平面)的一个法向量和平面的一个法向量,由题意得出,结合空间向量数量积的坐标运算可求出实数的值.【题目详解】(1)方法一:如图,连接,因为是的重心,是的中点,即,,,,所以,,又因为平面,平面,平面;方法二:以为原点,以射线为轴的正半轴,建立空间直角坐标系,则、、、、、,是的重心,则点的坐标为,,,即,又因为平面,平面,平面;(2),,,所以异面直线与所成角的余弦值;(3),,,,,,,,设平面的法向量为,平面的法向量为,由,得,即,令,可得,,所以,平面的一个法向量为,由,得,得,取,则,,所以,平面的一个法向量为,由于二面角为直二面角,所以,,则,解得,合乎题意.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论