版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市北京第四中学数学高二第二学期期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则()A. B. C. D.2.是双曲线的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点,若,则的离心率是()A. B. C. D.3.已知向量满足,点在线段上,且的最小值为,则的最小值为()A. B. C. D.24.若函数在区间上的图象如图所示,则的值()A. B.C. D.5.已知离散型随机变量X的分布列如图,则常数c为()X01PA. B. C.或 D.6.已知双曲线E:上的四点A,B,C,D满足,若直线AD的斜率与直线AB的斜率之积为2,则双曲线C的离心率为A. B. C. D.7.某大学中文系共有本科生5000人,期中一、二、三、四年级的学生比为5:4:3:1,要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生A.100人 B.60人 C.80人 D.20人8.设则=()A. B. C. D.9.已知A={|},B={|},则A∪B=A.{|或} B.{|} C.{|} D.{|}10.设集合,集合,则()A. B. C. D.11.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:时间周一周二周三周四周五车流量(万辆)100102108114116浓度(微克)7880848890根据上表数据,用最小二乘法求出与的线性回归方程是()参考公式:,;参考数据:,;A. B. C. D.12.设全集U=R,集合,,则集合()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.连续3次抛掷一枚质地均匀的硬币,在至少有一次出现正面向上的条件下,恰有一次出现反面向上的概率为.14.观察等式:,,.照此规律,对于一般的角,有等式.15.已知a=log0.35, b=2316.在一个如图所示的6个区域栽种观赏植物,要求同一块区域中种同一种植物,相邻的两块区域中种不同的植物.现有4种不同的植物可供选择,则不同的栽种方案的总数为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)《基础教育课程改革纲要(试行)》将“具有良好的心理素质”列入新课程的培养目标.为加强心理健康教育工作的开展,不断提高学生的心理素质,九江市某校高二年级开设了《心理健康》选修课,学分为2分.学校根据学生平时上课表现给出“合格”与“不合格”两种评价,获得“合格”评价的学生给予41分的平时分,获得“不合格”评价的学生给予31分的平时分,另外还将进行一次测验.学生将以“平时分×41%+测验分×81%”作为“最终得分”,“最终得分”不少于51分者获得学分.该校高二(1)班选修《心理健康》课的学生的平时分及测验分结果如下:测验分[31,41)[41,41)[41,51)[51,61)[61,81)[81,91)[91,111]平时分41分人数1113442平时分31分人数1111111(1)根据表中数据完成如下2×2列联表,并分析是否有94%的把握认为这些学生“测验分是否达到51分”与“平时分”有关联?选修人数测验分达到51分测验分未达到51分合计平时分41分平时分31分合计(2)用样本估计总体,若从所有选修《心理健康》课的学生中随机抽取4人,设获得学分人数为,求的期望.附:,其中1.11.141.1241.111.1141.1112.6153.8414.1245.5346.86911.82818.(12分)在平面直角坐标系中,点是坐标原点,已知点为线段上靠近点的三等分点.求点的坐标:若点在轴上,且直线与直线垂直,求点的坐标.19.(12分)已知数列满足,.(Ⅰ)证明:数列是等差数列;(Ⅱ)求数列的前项和.20.(12分)已知函数在处取得极大值为9.(1)求,的值;(2)求函数在区间上的最值.21.(12分)已知曲线C的参数方程为(a参数),以直角坐标系的原点为极点,x正半轴为极轴建立极坐标系.(Ⅰ)求曲线C的极坐标方程;(Ⅱ)若直线l极坐标方程为,求曲线C上的点到直线l最大距离.22.(10分)已知函数fx(1)讨论函数fx(2)当n∈N*时,证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据二项分布求对应概率【题目详解】,所以选C.【题目点拨】本题考查二项分布,考查基本分析求解能力,属基础题.2、A【解题分析】试题分析:由题意得,因此,选A.考点:双曲线离心率【名师点睛】求双曲线的离心率(取值范围)的策略求双曲线离心率是一个热点问题.若求离心率的值,需根据条件转化为关于a,b,c的方程求解,若求离心率的取值范围,需转化为关于a,b,c的不等式求解,正确把握c2=a2+b2的应用及e>1是求解的关键.3、D【解题分析】
依据题目条件,首先可以判断出点的位置,然后,根据向量模的计算公式,求出的代数式,由函数知识即可求出最值.【题目详解】由于,说明点在的垂直平分线上,当是的中点时,取最小值,最小值为,此时与的夹角为,与的夹角为,∴与的夹角为,的最小值是4,即的最小值是2.故选D.【题目点拨】本题主要考查了平面向量有关知识,重点是利用数量积求向量的模.4、A【解题分析】
根据周期求,根据最值点坐标求【题目详解】因为,因为时,所以因为,所以,选A.【题目点拨】本题考查由图像求三角函数解析式,考查基本分析求解能力,属基础题.5、A【解题分析】
根据所给的随机变量的分布列写出两点分步的随机变量的概率要满足的条件,一是两个概率都不小于0,二是两个概率之和是1,解出符合题意的c的值.【题目详解】由随机变量的分布列知,,,,∴,故选A.【题目点拨】本题主要考查分布列的应用,求离散型随机变量的分布列和期望,属于基础题.6、A【解题分析】很明显,A,B,C,D四点组成平行四边形ABDC,如图所示,设,则:,点A在双曲线上,则:,据此可得:,结合可得双曲线的离心率为.本题选择A选项.点睛:求双曲线离心率或离心率范围的两种方法:一种是直接建立e的关系式求e或e的范围;另一种是建立a,b,c的齐次关系式,将b用a,e表示,令两边同除以a或a2化为e的关系式,进而求解.7、C【解题分析】
要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,
则应抽二年级的学生人数为:
(人).
故答案为80.8、D【解题分析】分析:先根据复数除法法则求,再根据共轭复数定义得详解:因为所以选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为9、D【解题分析】
根据二次不等式的解法得到B={|}=,再根据集合的并集运算得到结果.【题目详解】B={|}=,A={|},则A∪B={|}.故答案为:D.【题目点拨】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.10、C【解题分析】分析:解不等式,得到和,由集合的交集运算可得到解。详解:解绝对值不等式,得;由对数函数的真数大于0,得根据集合的运算得所以选C点睛:本题考查了解绝对值不等式,对数函数的定义域,集合的基本运算,是基础题。11、B【解题分析】
利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果.【题目详解】由题意,b==0.72,a=84﹣0.72×108=6.24,∴=0.72x+6.24,故选:B.【题目点拨】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.12、A【解题分析】
求出,然后求解即可.【题目详解】全集,集合,则集合,所以,故选A.【题目点拨】该题考查的是有关集合的运算,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:至少有一次正面向上的概率为,恰有一次出现反面向上的概率为,那么满足题意的概率为.考点:古典概型与排列组合.14、【解题分析】试题分析:,,,所以.考点:归纳推理.15、a<c<b【解题分析】
将a,b,c分别判断与0,1的大小关系得到答案.【题目详解】a=b=0<c=故答案为a<c<b【题目点拨】本题考查了数值的大小比较,0,1分界是一个常用的方法.16、【解题分析】
先种B、E两块,再种A、D,而种C、F与种A、D情况一样,根据分类与分步计数原理可求.【题目详解】先种B、E两块,共种方法,再种A、D,分A、E相同与不同,共种方法,同理种C、F共有7种方法,总共方法数为【题目点拨】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.本题先种B、E两块,让问题变得更简单.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有94%的把握认为学生“测验分是否达到51分”与“平时分”有关联;(2)4【解题分析】
(1)根据数据填表,然后计算,可得结果.(2)根据计算,可得未获得分数的人数,然后可知获得分数的概率,依据二项分布数学期望的计算方法,可得结果.【题目详解】解:(1)根据表中数据统计,可得2x2列联表选修人数测验分合计达到51分未达到51分平时分41分13214平时分31分234合计14421,∴有94%的把握认为学生“测验分是否达到51分”与“平时分”有关联(2)分析学生得分,,,平时分41分的学生中测验分只需达到41分,而平时分31分的学生中测验分必须达到51分,才能获得学分平时分41分的学生测验分未达到41分的只有1人,平时分31分的学生测验分未达到51分的有3人∴从这些学生中随机抽取1人,该生获得学分的概率为,.【题目点拨】本题考查统计量的计算以及二项分布,第(2)问中在于理解,理解题意,细心计算,属基础题.18、(1)(2)【解题分析】
(1)由题意利用线段的定比分点坐标公式,两个向量坐标形式的运算法则,求出点P的坐标.(2)由题意利用两个向量垂直的性质,两个向量坐标形式的运算法则,求出点Q的坐标.【题目详解】设,因为,所以,又,所以,解得,从而.设,所以,由已知直线与直线垂直,所以则,解得,所以.【题目点拨】本题主要考查了线段的定比分点坐标公式,两个向量垂直的性质,两个向量坐标形式的运算,属于基础题,着重考查了推理与运算能力.19、(Ⅰ)详见解析;(Ⅱ).【解题分析】
(Ⅰ)利用定义得证.(Ⅱ)由(Ⅰ)知,利用分组求和法的到前项和.【题目详解】解:(Ⅰ)由,可得,即,又,∴,∴数列是首项为3,公差为2的等差数列.(Ⅱ)由(Ⅰ)知,,∴,∴.【题目点拨】本题考查了等差数列的证明,分组求和法求前项和,意在考查学生对于数列公式和方法的灵活运用.20、(1).(2)函数在区间上的最大值为9,最小值为.【解题分析】分析:(I)首先求解导函数,然后结合,可得.(II)由(I)得,结合导函数研究函数的单调性和最值可知函数在区间上的最大值为9,最小值为.详解:(I)依题意得,即,解得.经检验,上述结果满足题意.(II)由(I)得,令,得;令,得,的单调递增区间为和,的单调递增区间是,,,所以函数在区间上的最大值为9,最小值为.点睛:(1)可导函数y=f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同.(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值.21、(1)(2)【解题分析】
(1)利用平方和为1消去参数得到曲线C的直角坐标方程,再利用,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,加上半径即可得到最大距离.【题目详解】(1)由,得,两式两边平方并相加,得,所以曲线表示以为圆心,2为半径的圆.将代入得,化简得所以曲线的极坐标方程为(2)由,得,即,得所以直线的直角坐标方程为因为圆心到直线的距离,所以曲线上的点到直线的最大距离为.【题目点拨】本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题.22、(1)答案不唯一,具体见解析(2)见解析【解题分析】
(1)利用导数求函数单调区间的套路,确定定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论