上海黄浦区2024届数学高二下期末考试试题含解析_第1页
上海黄浦区2024届数学高二下期末考试试题含解析_第2页
上海黄浦区2024届数学高二下期末考试试题含解析_第3页
上海黄浦区2024届数学高二下期末考试试题含解析_第4页
上海黄浦区2024届数学高二下期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海黄浦区2024届数学高二下期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线y2=4x焦点F的直线交抛物线于A、B两点,交其准线于点C,且A、C位于x轴同侧,若|AC|=2|AF|,则|BF|等于()A.2 B.3 C.4 D.52.设x0是函数f(x)=lnx+x﹣4的零点,则x0所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)3.给出下列四个命题:①回归直线过样本点中心(,)②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变③将一组数据中的每个数据都加上或减去同一个常数后,方差不变④在回归方程=4x+4中,变量x每增加一个单位时,y平均增加4个单位其中错误命题的序号是()A.① B.② C.③ D.④4.在方程(为参数)所表示的曲线上的点是()A.(2,7) B. C.(1,0) D.5.若命题“存在,使”是假命题,则非零实数的取值范围是()A. B. C. D.6.定义在上的函数,当时,,则函数()的所有零点之和等于()A.2 B.4 C.6 D.87.设,则A. B. C. D.8.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为()A. B.C. D.9.若数列是等比数列,则“首项,且公比”是“数列单调递增”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.非充分非必要条件10.设,则“”是“”成立的()A.充要不必要条件 B.必要不充分条件C.充要条件 D.既不充要也不必要条件11.抛物线上的一点M到焦点的距离为1,则点M的纵坐标是A. B. C. D.12.是双曲线的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点,若,则的离心率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若复数()为纯虚数,则____.14.某单位招聘员工,有200名应聘者参加笔试,随机抽查了其中20名应聘者笔试试卷,统计他们的成绩如下表:分数段

人数

若按笔试成绩择优录取40名参加面试,由此可预测参加面试的分数线为分15.若函数在和时取极小值,则实数a的取值范围是________.16.直线过抛物线的焦点且与交于、两点,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,三棱锥中,平面,,,为上一点,,,分别为,的中点.(1)证明:;(2)求平面与平面所成角的余弦值.18.(12分)为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,数据如下表所示:支付方式微信支付宝购物卡现金人数200150150100现有甲、乙、丙三人将进入该超市购物,各人支付方式相互独立,假设以频率近似代替概率.(1)求三人中使用微信支付的人数多于现金支付人数的概率;(2)记X为三人中使用支付宝支付的人数,求X的分布列及数学期望.19.(12分)函数令,.(1)求并猜想的表达式(不需要证明);(2)与相切,求的值.20.(12分)随着生活水平的提高,越来越多的人参与了潜水这项活动.某潜水中心调查了100名男性与100女性下潜至距离水面5米时是否耳鸣,下图为其等高条形图:①绘出列联表;②根据列联表的独立性检验,能否在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系?附:,其中.0.0250.0100.0050.0015.0246.6357.87910.82821.(12分)函数,.(Ⅰ)求函数的极值;(Ⅱ)若,证明:当时,.22.(10分)若不等式的解集是,求不等式的解集.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

由题意可知:|AC|=2|AF|,则∠ACD,利用三角形相似关系可知丨AF丨=丨AD丨,直线AB的切斜角,设直线l方程,代入椭圆方程,利用韦达定理及抛物线弦长公式求得丨AB丨,即可求得|BF|.【题目详解】抛物线y2=4x焦点F(1,0),准线方程l:x=﹣1,准线l与x轴交于H点,过A和B做AD⊥l,BE⊥l,由抛物线的定义可知:丨AF丨=丨AD丨,丨BF丨=丨BE丨,|AC|=2|AF|,即|AC|=2|AD|,则∠ACD,由丨HF丨=p=2,∴,则丨AF丨=丨AD丨,设直线AB的方程y(x﹣1),,整理得:3x2﹣10x+3=0,则x1+x2,由抛物线的性质可知:丨AB丨=x1+x2+p,∴丨AF丨+丨BF丨,解得:丨BF丨=4,故选:C.【题目点拨】本题考查抛物线的性质,直线与抛物线的位置关系,考查相似三角形的性质,考查计算能力,数形结合思想,属于中档题.2、C【解题分析】

由函数的解析式可得,再根据函数的零点的判定定理,求得函数的零点所在的区间,得到答案.【题目详解】因为是函数的零点,由,所以函数的零点所在的区间为,故选C.【题目点拨】本题主要考查了函数的零点的判定定理的应用,其中解答中熟记零点的存在定理,以及对数的运算性质是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解题分析】

由回归直线都过样本中心,可判断①;由均值和方差的性质可判断②③;由回归直线方程的特点可判断④,得到答案.【题目详解】对于①中,回归直线过样本点中心,故①正确;对于②中,将一组数据中的每个数据都加上或减去同一个常数后,平均值为加上或减去这个常数,故②错误;对于③中,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故③正确;对于④中,在回归直线方程,变量每增加一个单位时,平均增加4个单位,故④正确,故选B.【题目点拨】本题主要考查了回归直线方程的特点和均值、方差的性质的应用,着重考查了.判断能力,属于基础题.4、D【解题分析】分析:化参数方程(为参数)为普通方程,将四个点代入验证即可.详解:方程(为参数)消去参数得到将四个点代入验证只有D满足方程.故选D.点睛:本题考查参数分析与普通方程的互化,属基础题5、C【解题分析】

根据命题真假列出不等式,解得结果.【题目详解】因为命题“存在,使”是假命题,所以,解得:,因为.故选:.【题目点拨】本题考查命题真假求参数,注意已知条件非零实数是正确解答本题的关键,考查学生分析求解能力,难度较易.6、D【解题分析】分析:首先根据得到函数关于对称,再根据对称性画出函数在区间上的图像,再根据函数与函数图像的交点来求得函数的零点的和.详解:因为故函数关于对称,令,即,画出函数与函数图像如下图所示,由于可知,两个函数图像都关于对称,两个函数图像一共有个交点,对称的两个交点的横坐标的和为,故函数的个零点的和为.故选D.点睛:本小题主要考查函数的对称性,考查函数的零点的转化方法,考查数形结合的数学思想方法.解决函数的零点问题有两个方法,一个是利用零点的存在性定理,即二分法来解决,这种方法用在判断零点所在的区间很方便.二个是令函数等于零,变为两个函数,利用两个函数图像的交点来得到函数的零点.7、C【解题分析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.8、B【解题分析】试题分析:函数,的图象上所有点向左平移个单位长度得,再把图象上各点的横坐标扩大到原来的2倍,得,选B.考点:三角函数图像变换9、B【解题分析】

证明由,可以得到数列单调递增,而由数列单调递增,不一定得到,,从而做出判断,得到答案.【题目详解】数列是等比数列,首项,且公比,所以数列,且,所以得到数列单调递增;因为数列单调递增,可以得到首项,且公比,也可以得到,且公比.所以“首项,且公比”是“数列单调递增”的充分不必要条件.故选:B.【题目点拨】本题考查等比数列为递增数列的判定和性质,考查充分不不必要条件,属于简单题.10、C【解题分析】试题分析:当时,,当一正一负时,,当时,,所以,故选C.考点:充分必要条件.11、B【解题分析】

由抛物线方程化标准方程为,再由焦半径公式,可求得。【题目详解】抛物线为,由焦半径公式,得。选B.【题目点拨】抛物线焦半径公式:抛物线,的焦半径公式。抛物线,的焦半径公式。抛物线,的焦半径公式。抛物线,的焦半径公式。12、A【解题分析】试题分析:由题意得,因此,选A.考点:双曲线离心率【名师点睛】求双曲线的离心率(取值范围)的策略求双曲线离心率是一个热点问题.若求离心率的值,需根据条件转化为关于a,b,c的方程求解,若求离心率的取值范围,需转化为关于a,b,c的不等式求解,正确把握c2=a2+b2的应用及e>1是求解的关键.二、填空题:本题共4小题,每小题5分,共20分。13、0【解题分析】试题分析:由题意得,复数为纯虚数,则,解得或,当时,(舍去),所以.考点:复数的概念.14、80【解题分析】解:∵×20=4,∴随机抽查了20名笔试者中的前4名进入面试,观察成绩统计表,预测参加面试所画的分数线是80分,故答案为8015、.【解题分析】分析:根据题意在和时取极小值即0,1为导函数等于零的根,故可分解因式导函数,然后根据在0,1处要取得极小值从而确定a的取值范围.详解:由题可得:,令故原函数有三个极值点为0,1,a,即导函数有三个解,由在0,1处要取得极小值所以0和1的左边导函数的值要为负值,右边要为正值,故a值只能放在0和1的中间,所以a的取值范围是.点睛:考查函数的极值点的定义和判断,对定义的理解是解题关键,属于中档题.16、【解题分析】

本题先根据抛物线焦点坐标可得出值,再根据抛物线的定义和准线,可知,再分类讨论直线斜率存在和不存在两种情况,联立直线和抛物线方程,利用韦达定理最终求得结果.【题目详解】由题得,抛物线的焦点,所以,故.所以抛物线的方程为:.可设,由抛物线的定义可知:.当斜率不存在时,,所以:.当斜率存在时,设直线的斜率为,则直线方程为:.联立,整理得:,所以,所以.综合①②,可知.故答案为:1.【题目点拨】本题主要考查抛物线的标准方程,焦点坐标和准线,结合抛物线的定义,联立方程组,利用韦达定理化简求值,其中需要注意,当直线斜率未知时,需分类讨论斜率存在和不存在两种情况.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解题分析】分析:由PA=AC=AB,N为AB上一点,AB=4AN,我们不妨令PA=1,然后以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系.由此不难得到各点的坐标(1)要证明CM⊥SN,我们可要证明即可,根据向量数量积的运算,我们不难证明;(2)要求平面与平面CMN所成角的大小,我们只要利用求向量夹角的方法,求出平面与平面CMN的法向量的夹角,再由它们之间的关系,易求出平面与平面CMN所成角的大小.详解:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系(如图).则P(0,0,1),C(0,1,0),B(2,0,0),又AN=AB,M、S分别为PB、BC的中点,∴N(,0,0),M(1,0,),S(1,,0),(1)=(1,-1,),=(-,-,0),∴·=(1,-1,)·(-,-,0)=0,[来源:Z.X.X.K]因此CM⊥SN.=(-,1,0),设a=(x,y,z)为平面CMN的一个法向量,∴·a=0,·a=0.则∴取y=1,则得=(2,1,-2).平面NBC的法向量,因为平面NBC与平面CMN所成角是锐二面角所以平面NBC与平面CMN所成角的余弦值为.点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18、(1)55108【解题分析】

(1)根据表格,得出顾客使用微信、支付宝、购物卡和现金支付的概率,之后应用互斥事件有一个发生的概率和独立事件同时发生的概率公式求得结果;(2)利用二项分布求得结果.【题目详解】(1)由表格得顾客使用微信、支付宝、购物卡和现金支付的概率分别为13设Y为三人中使用微信支付的人数,Z为使用现金支付的人数,事件A为“三人中使用微信支付的人数多于现金支付人数”,则P(A)=P(Y=3)+P(Y=2)+P(Y=1且Z=0)=(=127(2)由题意可知X~X0123P272791E(X)=3×【题目点拨】该题考查的是有关概率的问题,涉及到的知识点有独立事件同时发生的概率公式,互斥事件有一个发生的概率公式,独立重复试验,二项分布的分布列和期望,属于简单题目.19、(1)见解析;(2)4【解题分析】

(1)分别求出和的解析式,结合函数的解析式归纳出函数的解析式;(2)设切点,由函数在点处的切线斜率等于直线,以及点为直线与函数图象的公共点,利用这两个条件列方程组求出的值。【题目详解】(1),.猜想.(2)设切点为,,,切线斜率,解得.所以.所以,解得.【题目点拨】本题考查归纳推理、导数的几何意义,在处理直线与函数相切的问题时,抓住以下两个基本点:(1)函数在切点处的导数值等于切线的斜率;(2)切点为切线与函数图象的公共点。另外,在处理直线与二次曲线或反比例型函数图象相切的问题,也可以将直线与曲线方程联立,利用判别式为零处理。20、①答案见解析;②能在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系.【解题分析】分析:①.由题意结合等高条形图求得相应的人数,然后绘制列联表即可;②.结合①中的列联表计算的观测值:,则能在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系.详解:①由男女生各100人及等高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论