硬件基础知识大全_第1页
硬件基础知识大全_第2页
硬件基础知识大全_第3页
硬件基础知识大全_第4页
硬件基础知识大全_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

主板

之所以把这东西放在第一位,是因为作为它太重要。

我们常见的主板是ATX主板。它是采用印刷电路板(PCB)制造

而成。是在一种绝缘材料上采用电子印刷工艺制造的。市场上主

要有4层板与6层板二种。常见的都是4层板。用6层PCB板设

计的主板不易变形,稳定性大大提高。如果你有幸买到了6层板,

那可绝对超值啊!哈!在主板的每层都布满了电路,所以,如果

PCB板烧坏,比较轻的凭借我们工程师高超的技术,可以通过搭

明线维修,比较严重的话,这片主板的生命也就到此结束了!

主板上面的零件看起来眼花缭乱,可他们都是非常有条有理的排

列着。主要包括一个CPU插座;北桥芯片、南桥芯片、BIOS芯

片等三大芯片;前端系统总线FSB、内存总线、图形总线AGP、

数据交换总线HUB、外设总线PCI等五大总线;软驱接口FDD、

通用串行设备接口USB、集成驱动电子设备接口IDE等七大接口。

一、主板上的主要芯片

1、北桥芯片MCH在CPU插座的左方是一个内存控制芯片,

也叫北桥芯片、一般上面有一铝质的散热片。北桥芯片的主要功

能是数据传输与信号控制。它一方面通过前端总线与CPU交换信

号,另一方面又要与内存、AGP、南桥交换信号。北桥芯片坏了

以后的现象多为不亮,有时亮后也不断死机。如果工程师判定你

的北桥芯片坏了,再如果你的主板又比较老的话,基本上就没有

什么维修的价值了

2、南桥芯片ICH4南桥芯片主要负责外部设备的数据处理与

传输。比ICH4早的有ICHKICH2,ICH3,但它不支持USB2.0。

而ICH4支持USB2.0。区分它们也很简单:南桥芯片上有

82801AB82801BB82801CB82801DB分别对应ICHIICH2

ICH3ICH4。南桥芯片坏后的现象也多为不亮,某些外围设备

不能用,比如IDE口、FDD口等不能用,也可能是南桥坏了。因

为南北桥芯片比较贵,焊接又比较特殊,取下它们需要专门的

BGA仪,所以一般的维修点无法修复南北桥。

3、BIOS芯片FWH它是把一些直接的硬件信息固化在一个只

读存储器内。是软件和硬件之间这重要接口。系统启动时首先从

它这里调用一些硬件信息,它的性能直接影响着系统软件与硬件

的兼容性。例如一些早期的主板不支持大于二十G的硬盘等问

题,都可以通过升级BIOS来解决。我们日常便用时遇到的一些

与新设备不兼容的问题也可以通过升级来解决。如果你的主板突

然不亮了,而CPU风扇仍在转动,那么你首先应该考虑BIOS芯

片是否损坏。

4、系统时钟发生器CLK在主板的中间位置有个晶振元件,

它会产生一系列高频脉冲波,这些原始的脉冲波再输入到时钟发

生器芯片内,经过整形与分频,然后分配给计算机需要的各种频

率。

5、超级输入输出接口芯片I/O它一般位于主板的左下方或左

上方,主要芯片有Winbond与ITE,它负责把键盘、鼠标、串口

进来的串行数据转化为并行数据。同时也对并口与软驱口的数据

进行处理。在我们的维修现场,诸如键盘与鼠标口坏,打印口坏

等一些外设不能用,多为I/O芯片坏,有时甚至造成不亮的现象。

6、声卡芯片因为现在的主板多数都集成了声卡,而且集成的

多为AC,97声卡芯片。当然,也有CMI的8738声卡芯片等。如

果你的集成声卡没有声音,这儿坏了的可能性最大。

二、主板上主要的插座

1、CPU插座目前所有的主板都采用了socket系列零拔力插

座。早期的P3采用的socket370插座,现在的P4多采用

socket478插座,早期的P4也有采用socket423插座的,intel

的服务器CPU如:至虽(Xeon)则采用了socket603插座。Intel

对CPU封装格式的不断变化让我们这些fan们给他送了不少钱

啊!不过近日听说intel下一代CPU的封装格式还是采用

socket478的格式,这对于不断追求性能的DIYer们来说可是一

个好消息啊。

2、内存总线插座现在市场上我们能见到的内存有SDRAM、DDR

SDRAM、RAMBUS三种。SDRAM内存由于DDR内存的价格下调已经

逐渐淡出市场,它采用168线插座,中间与左边有两个防反插断

口;DDRSDRAM由于非常高的性价比已经成为市场的主流。它

采用184线插座,在中间只有一个防反插断口;RAMBUS内存虽

然性能好,但是价格一直高踞不下,加上intel已经放弃了对它

的支持,所以它的前途至今还只是一个悬念!它的插座采用184

线RIMM插座,是在中间有两个防反插断口。

有些客户多次反映在845主板上有时内存认不全的现象,这是因

为lintel845系列主板只能支持4个Bank(一个Bank可以理

解为内存条的一面),在845系列主板上一般设有三个内存插槽,

而第二个插槽与第三个插槽共享二个Bank。所以,如果你在第

二个与第三个插槽插的内存条为双面的256M,那么就只能认到

一个256M。

3、AGP图形总线插座它位于CPU插座的左边,呈棕色。它的

频率为64MHZ。从速度上分为AGP2X,现在的多为AGP4X,也有一

些主板已经支持AGP8X。由于不同的速度所需要的电压不同,所

以一些主板不亮主要是用户把老的AGP2X显卡插在的新的AGP2X

主板上,从而把AGP插座烧坏!令人欣慰的是一些新的主板已经

在主板上集成了电压自动调节装置,它可以自动识别显卡的电

o

4、PCI总线插座它呈现为白色,在AGP插座的旁边,因主

板不同,多少不等。它的频率为32MHZ。多插网卡,声卡等其它

一些外设。

5、IDE设备接口它一般位于主板的下面。有四十针八十线。

两个IDE口并在一起,有时一个呈绿色,表示它为IDEL因为

系统首先检测IDE1,所以IDE1应该接系统引导硬盘。现在的主

板多已支持ATA100,有得支持ATA133,但更高端的主板已经支

持串行ATA,它是在并行传输速率无法进一步提高的情况下出现

的一种新的、具有更高传输速度的技术,也将是下一代的主流技

术。

一口气说了这么多,我已经口干舌燥了,大家再看看自己的主板,

是不是感觉它比以前熟悉了多了?哈哈!我们也到说再见的时候

了,即然今天说主板,那么我就再说一个关于主板的消息吧,我

们技服中心近日接受了一批维修的板子,我们的工程师维修起来

特别困难,后来经知情人士指点,才发现这批主板的PCB板边缘

都有一个针眼大小的缺口。不仔细看根本分辨不出来。大家可不

要小看这个小口中,它是联想对报废主板打的专门的印记!我们

居然修复了好多片,我都不得不傀服我们的技术水平了!这可不

是自夸的哟!所以,大家买二手主板时可一定要小心啊!

CPU

主要谈谈频率。

1.凡是懂得点电脑的朋友,都应该对,频率,两个字熟悉透了吧!

作为机器的核心CPU的频率当然是非常重要的,因为它能直接影

响机器的性能。那么,您是否对CPU频率方面的问题了解得很透

彻呢?

所谓主频,也就是CPU正常工作时的时钟频率,从理论上讲CPU

的主频越高,它的速度也就越快,因为频率越高,单位时钟周期

内完成的指令就越多,从而速度也就越快了。但是由于各种CPU

内部结构的差异(如缓存、指令集),并不是时钟频率相同速度

就相同,比如PHI和赛扬,雷鸟和DURON,赛扬和DURON,PIII

与雷鸟,在相同主频下性能都不同程度的存在着差异。目前主流

CPU的主频都在600MHz以上,而频率最高(注意,并非最快)

的P4已经达到1.7GHz,AMD的雷鸟也已经达到了1.3GHz,而且

还会不断提升。

在486出现以后,由于CPU工作频率不断提高,而PC机的

一些其他设备(如插卡、硬盘等)却受到工艺的限制,不能承受

更高的频率,因此限制了CPU频率的进一步提高。因此,出现了

倍频技术,该技术能够使CPU内部工作频率变为外部频率的倍

数,从而通过提升倍频而达到提升主频的目的。因此在486以后

我们接触到两个新的概念一外频与倍频。它们与主频之间的关系

是外频X倍频=主频。一颗CPU的外频与今天我们常说的FSB

(Frontsidebus,前端总线)频率是相同的(注意,是频率相

同),目前市场上的CPU的外频主要有66MHz(赛扬系列X100MHz

(部分PIII和部分雷鸟以及所有P4和DURON)、133MHz(部分

PHI和部分雷鸟)。值得一提的是,目前有些媒体宣传一些CPU

的外频达到了20OMHz(DURON)、266MHz(雷鸟)甚至400MHz(P4),

实际上是把外频与前端总线混为一谈了,其实它们的外频仍然是

100MHz和133MHz,但是由于采用了特殊的技术,使前端总线能

够在一个时钟周期内完成2次甚至4次传输,因此相当于将前端

总线频率提升了好几倍。不过从外频与倍频的定义来看,它们的

外频并未因此而发生改变,希望大家注意这一点。今天外频并未

比当初提升多少,但是倍频技术今天已经发展到一个很高的阶

段。以往的倍频都只能达到2-3倍,而现在的P4、雷鸟都已经

达到了10倍以上,真不知道以后还会不会更高。眼下的CPU倍

频一般都已经在出厂前被锁定(除了部分工程样品),而外频则

未上锁。部分CPU如AMD的DURON和雷鸟能够通过特殊手段对其

倍频进行解锁,而INTEL产CPU则不行。

由于外频不断提高,渐渐地提高到其他设备无法承受了,因

此出现了分频技术(其实这是主板北桥芯片的功能)。分频技术

就是通过主板的北桥芯片将CPU外频降低,然后再提供给各插

卡、硬盘等设备。早期的66MHz外频时代是PCI设备2分频,AGP

设备不分频;后来的100MHz外频时代则是PCI设备3分频,AGP

设备2/3分频(有些100MHz的北桥芯片也支持PCI设备4分频);

目前的北桥芯片一般都支持133MHz夕卜频,即PCI设备4分频、

AGP设备2分频。总之,在标准外频(66MHz、100MHz、133MHz)

下北桥芯片必须使PCI设备工作在33MHz,AGP设备工作在66MHz,

才能说该芯片能正式支持该种外频。

最后再来谈谈CPU的超频。CPU超频其实就是通过提高外频

或者倍频的手段来提高CPU主频从而提升整个系统的性能。超频

的历史已经很久远(其实也就几年),但是真正为大家所喜爱则

是从赛扬系列的出产而开始的,其中赛扬300A超450、366超

550直到今天还为人们所津津乐道。而它们就是通过将赛扬CPU

的66MHz外频提升到100MHz从而提升了CPU的主频。而早期的

DURON超频则与赛扬不同,它是通过破解倍频锁然后提升倍频的

方式来提高频率。总的看来,超倍频比超外频更稳定,因为超倍

频没有改变外频,也就不会影响到其他设备的正常运作;但是如

果超外频,就可能遇到非标准外频如75MHz、83MHz、112MHz等,

这些情况下由于分频技术的限制,致使其他设备都不能工作在正

常的频率下,从而可能造成系统的不稳定,甚至出现硬盘数据丢

失、严重的可能损坏。因此,笔者在这里告诫大家:超频虽有好

处,但是也十分危险,所以请大家慎重超频!

2.关于超频

如果是AMD的CPU要超的话就了解一下他的频率极限吧

AMD在不久前发布了它们全新的AthlonXP处理器,其频率分别

显XP1500+,1600+,1700+和1800+。为了对抗IntelPentium4

处理器,AthlonXP重新采用了PR值(性能指数)来标称处理

器,而AhlonXP1600+意味着拥有与Pentium41600MHz相同的

性能。

AthlonXP采用了全新基于0.18微米制程的Palonmino核心,

其核心面积由雷鸟的120mm2增加为128mm2。而封装方式也变为

类似FC-PGAPentiumlll的OPGA封装。AMD宣称在采用新核心

后AthlonXP的发热量将较同频的雷鸟低20%。而更低的散热量,

自然也就意味着更强劲的超频性能。

所以,我们决定测试一下AthlonXP的超频能力。我们选择了性

价比较好的AthlonXP1600+。它比1800+要便宜许多,但超频

能力似乎可以达到1900Mhz以上。

AthlonXP同样有与雷鸟类似的L1桥路,不过已被激光切断,

要想超频,首先必须将L1桥路重新相连。具体连接桥路的方式

可以参见本站相关文章。由于处理器默认电压为1.75v,要更好

的发挥处理器的超频极限,这需要一块具备电压调节功能的主

板。我们采用了磐英8K7A和8KHA+进行了对比,尽管8K7A在调

节方式上较不便,但超频性能却好于新的8KHA+。

在解频之后,我们首先将倍频设置为6,然后将外频设置为最高,

在8K7A下,我们将处理器超至最高200MHz(400MHzDDR)外频,

通过200MHz外频下的内存性能测试,我们可以看出超频后的内

存带宽已经超出AMD760芯片40%左右。

刚才的测试仅仅只是风冷状态下的结果,这不过是个开始,接下

来我们将在极限致冷环境下测试处理器的超频极限。安装上水冷

器后。我们将电压调至2.lv。而VDDR调至2.9v。

测试结果令人惊叹,我们最终将处理器稳定于178MHz外频下,

此时频率已高达

1873.89MHzo

虽然我们希望能突破1900MHz的障碍,但没有成功。同时我们也

发现主板对于AthlonXP的超频也致关重要,虽然8KHA+采用更

新的芯片组并拥有更好的性能,但在超频能力方面却不如其前辈

而新核心的超频能力,也得到了验证。

8K7AOAthlonXP

内存

1.内存的基础知识

RAM技术词汇

CDRAM-CachedDRAM——高速缓存存储器

CVRAM-CachedVRAM——高速缓存视频存储器

DRAM-DynamicRAM动态存储器

EDRAM-EnhancedDRAM——增强型动态存储器

EDORAM-ExtendedDateOutRAM外扩充数据模式存储器

EDOSRAM-ExtendedDateOutSRAM——外扩充数据模式静态存

储器

EDOVRAM-ExtendedDateOutVRAM——外扩充数据模式视频存

储器

FPM-FastPageMode快速页模式

FRAM-FerroelectricRAM铁电体存储器

SDRAM-SynchronousDRAM同步动态存储器

SRAM-StaticRAM——静态存储器

SVRAM-SynchronousVRAM——同步视频存储器

3DRAM-3DIMESIONRAM——3维视频处理器专用存储器

VRAM-VideoRAM——视频存储器

WRAM-WindowsRAM——视频存储器(图形处理能力优于VRAM)

MDRAM-MultiBankDRAM——多槽动态存储器

SGRAM-SignalRAM——单口存储器

存储器有哪些主要技术指标

存储器是具有“记忆”功能的设备,它用具有两种稳定状态的物

理器件来表示二进制数码

“0”和“1”,这种器件称为记忆元件或记忆单元。记忆元件可

以是磁芯,半导体触发器、MOS电路或电容器等。

位(bit)是二进制数的最基本单位,也是存储器存储信息的最小

单位,8位二进制数称为一

个字节(Byte),可以由一个字节或若干个字节组成一个字(Word)

在PC机中一般认为1个或2个字节组成一个字。若干个忆记单

元组成一个存储单元,大量的存储单元的集合组成一个存储体

(MemoryBank)o为了区分存储体内的存储单元,必须将它们逐一

进行编号,称为地址。地址与存储单元之间一一对应,且是存储

单元的唯一标志。应注意存储单元的地址和它里面存放的内容完

全是两回事。

根据存储器在计算机中处于不同的位置,可分为主存储器和辅助

存储器。在主机内部,直接

与CPU交换信息的存储器称主存储器或内存储器。在执行期间,

程序的数据放在主存储器内。各个存储单元的内容可通过指令随

机读写访问的存储器称为随机存取存储器(RAM)。另一种存储器

叫只读存储器(ROM),里面存放一次性写入的程序或数据,仅能

随机读出。RAM和ROM共同分享主存储器的地址空间。RAM中存

取的数据掉电后就会丢失,而掉电后ROM中的数据可保持不变。

因为结构、价格原因,主存储器的容量受限。为满足计算的需要

而采用了大容量的辅助存储器或称外存储器,如磁盘、光盘等.

存储器的特性由它的技术参数来描述。

存储容量:存储器可以容纳的二进制信息量称为存储容量。一般

主存储器(内存)容量在几十K到几十M字节左右;辅助存储器(外

存)在几百K到几千M字节。

存取周期:存储器的两个基本操作为读出与写入,是指将信息在

存储单元与存储寄存器(MDR)之间进行读写。存储器从接收读出

命令到被读出信息稳定在MDR的输出端为止的时间间隔,称为取

数时间TA;两次独立的存取操作之间所需的最短时间称为存储

周期TMC。半导体存储器的存取周期一般为60ns-100ns。

存储器的可*性:存储器的可*性用平均故障间隔时间MTBF来衡

量。MTBF可以理解为两次故障之间的平均时间间隔。MTBF越长,

表示可*性越高,即保持正确工作能力越强。

性能价格比:性能主要包括存储器容量、存储周期和可*性三项

内容。性能价格比是一个综合性指标,对于不同的存储器有不同

的要求。对于外存储器,要求容量极大,而对缓冲存储器则要求

速度非常快,容量不一定大。因此性能/价格比是评价整个存储

器系统很重要的指标。

SDARM能成为下一代内存的主流吗

快页模式(FPM)DRAM的黄金时代已经过去。随着高效内存集成电

路的出现和为优化Pentium芯片运行效能而设计的INTELHX、

VX等核心逻辑芯片组的支持,人们越来越倾向于采用扩展数据

输出(EDO)DRAM。EDODRAM采用一种特殊的内存读出电路控制

逻辑,在读写一个地址单元时,同时启动下一个连续地址单元的

读写周期。从而节省了重选地址的时间,使存储总线的速率提高

到也就是说,与快页内存相比,内存性能提高了将近

40MHzo

15%~30%,而其制造成本与快页内存相近。但是EDO内存也只

能辉煌一时,其称霸市场的时间将极为短暂。不久以后市场上主

流CPU的主频将高达200MHz以上。为优化处理器运行效能,总

线时钟频率至少要达到66MHz以上。多媒体应用程序以及

Windows95和WindowsNT操作系统对内存的要求也越来越高,

为缓解瓶颈,只有采用新的内存结构,以支持高速总线时钟频

率,而不至于插入指令等待周期。这样,为适应下一代主流CPU

的需要,在理论上速度可与CPU频率同步,与CPU共享一个时钟

周期的同步DRAM(SYNCHRONOUSDRAMS)即SDRAM(注意和用作

CACHE的SRAM区别,SRAM的全写是StaticRAM即静态RAM,

速度虽快,但成本高,不适合做主存)应运而生,与其它内存结

构相比,性能'价格比最高,势必将成为内存发展的主流。SDRAM

基于双存储体结构,内含两个交错的存储阵列,当CPU从一个存

储体或阵列访问数据的同时,另一个已准备好读写数据。通过两

个存储阵列的紧密切换,读取效率得到成倍提高。去年推出的

SDRAM最高速度可达100MHz,与中档Pentium同步,存储时间高

达5~8ns,可将Pentium系统性能提高140%,与Pentium100、

133、166等每一档次只能提高性能百分之几十的CPU相比,换

用SDRAM似乎是更明智的升级策略。在去年初许多DRAM生产厂

家已开始上市4MBx4和2MBx8的16MBSDRAM内存条,但其成

本较高。现在每一个内存生产厂家都在扩建SDRAM生产线。预

计到今年底和1998年初,随着64MSDRAM内存条的大量上市,

SDRAM将占据主导地位。其价格也将大幅下降。

但是SDRAM的发展仍有许多困难要加以克服,其中之一便是主板

核心逻辑芯片组的限制。VX

芯片组已开始支持168线SDRAM,但一般VX主板只有一条168

线内存槽,最多可上32MSDRAM,而简洁高效的HX主板则不支

持SDRAM。预计下一代Pentium主板芯片组TX将更好的支持

SDRAM。Intel最新推出的下一代Pentium主板芯片组TX将更好

的支持SDRAM。SDRAM不仅可用作主存,在显示卡专用内存方面

也有广泛应用。对显示卡来说,数据带宽越宽,同时处理的数据

就越多,显示的信息就越多,显示质量也就越高。以前用一种可

同时进行读写的双端口视频内存(VRAM)来提高带宽,但这种内存

成本高,应用受很大限制。因此在一般显示卡上,廉价的DRAM

和高效的EDODRAM应用很广。但随着64位显示卡的上市,带宽

已扩大到EDODRAM所能达到的带宽的极限,要达到更高的1600

X1200的分辨率,而又尽量降低成本,就只能采用频率达66MHz、

高带宽的SDRAM了。

SDRAM也将应用于共享内存结构(UMA)种集成主存和显示

内存的结构。这种结构在很大程度上降低了系统成本,因为许

多高性能显示卡价格高昂,就是因为其专用显示内存成本极高,

而UMA技术将利用主存作显示内存,不再需要增加专门显示内

存,因而降低了成本。

什么是FlashMemory存储器

介绍关于闪速存储器有关知识近年来,发展很快的新型半导体

存储器是闪速存储器(FlashMemory)。它的主要特点是在不加电

的情况下能长期保持存储的信息。就其本质而言,FlashMemory

属于EEPROM(电擦除可编程只读存储器)类型。它既有ROM的特

点,又有很高的存取速度,而且易于擦除和重写,功耗很小。

目前其集成度已达4MB,同时价格也有所下降。

由于FlashMemory的独特优点,如在一些较新的主板上采用

FlashROMBIOS,会使得BIOS升级非常方便。FlashMemory

可用作固态大容量存储器。目前普遍使用的大容量存储器仍为硬

盘。硬盘虽有容量大和价格低的优点,但它是机电设备,有机械

磨损,可*性及耐用性相对较差,抗冲击、抗振动能力弱,功耗

大。因此,一直希望找到取代硬盘的手段。由于FlashMemory

集成度不断提高,价格降低,使其在便携机上取代小容量硬盘已

成为可能。目前研制的Flash

Memory都符合PCMCIA标准,可以十分方便地用于各种便携式计

算机中以取代磁盘。当前有两种类型的PCMCIA卡,一种称为

Flash存储器卡,此卡中只有FlashMemory芯片组成的存储体,

在使用时还需要专门的软件进行管理。另一种称为Flash驱动

卡,此卡中除Flash芯片外还有由微处理器和其它逻辑电路组成

的控制电路。它们与IDE标准兼容,可在DOS下象硬盘一样直接

操作。因此也常把它们称为Flash固态盘。FlashMemory不足

之处仍然是容量还不够大,价格还不够便宜。因此主要用于要求

可*性高,重量轻,但容量不大的便携式系统中。在586微机中

已把BIOS系统驻留在Flash存储器中。

什么是ShadowRAM内存

ShadowRAM也称为“影子”内存。它是为了提高系统效率而采

用的一种专门技术。ShadowRAM所使用的物理芯片仍然是CMOS

DRAM(动态随机存取存储器)芯片。ShadowRAM占据了系统主存

的一部分地址空间。其编址范围为C0000~FFFFF,即为1MB主

存中的768KB〜1024KB区域。这个区域通常也称为内存保留区,

用户程序不能直接访问。ShadowRAM的功能是用来存放各种ROM

BIOS的内容。或者说ShadowRAM中的内容是ROMBIOS的拷贝。

因此也把它称为ROMShadow(即ShadowRAM的内容是ROMBIOS

的‘影子”)。在机器上电时,将自动地把系统BIOS、显示BIOS

及其它适配器的BIOS装载到ShadowRAM的指定区域中。由于

ShadowRAM的物理编址与对应的ROM相同,所以当需要访问BIOS

时,只需访问ShadowRAM即可,而不必再访问ROM。通常访

问ROM的时间在200ns左右,而访问DRAM的时间小于100ns(最

新的DRAM芯片访问时间为60ns左右或者更小)。在系统运行的

过程中,读取BIOS中的数据或调用BIOS中的程序模块是相当频

繁的。显然,采用了Shadow技术后,将大大提高系统的工作效

率。按下按键你可以看到该地址空间分配图,在如图所示的1MB

主存地址空间中,640KB以下的区域是常规内存。640KB-768KB

区域保留为显示缓冲区。768KB〜1024KB区域即为ShadowRAM

区。在系统设置中,又把这个区域按16KB大小的尺寸分为块,

由用户设定是否允许使用。C0000~C7FFF这两个16KB块(共

32KB)通常用作显示卡的ROMBIOS的Shadow区。C8000〜EFFFF

这10个16KB块可作为其它适配器的ROMBIOS的Shadow区。

F0000-FFFFF共64KB规定由系统ROMBIOS使用。应该说明的

是,只有当系统配置有640KB以上的内存时才有可能使用Shadow

RAM。在系统内存大于640KB时,用户可在CMOS设置中按照ROM

Shadow分块提示,把超过640KB以上的内存分别设置为“允许”

(Enabled)即可。

什么是EDORAM

内存是计算机中最主要的部件之一。微机诞生以来,它的心脏

一CPU几经改朝换代,目前已

发展到了PentiumH,较之于当初,它在速度上已有两个数量级

的增长。而内存的构成器件RAM(随机存储器)——般为DRAM(动

态随机存储器),虽然单个芯片的容量不断扩大,但存取速度并

没有太大的提高。虽然人们早就采用高速但昂贵的SRAM芯片在

CPU和内存之间增加一种缓冲设备一Cache,以缓冲两者之间的

速度不匹配问题。但这并不能根本解决问题。于是人们把注意

力集中到DRAM接口(芯片收发数据的途径上)。

在RAM芯片之中,除存储单元之外,还有一些附加逻辑电路,现

在,人们已注意到RAM芯片

的附加逻辑电路,通过增加少量的额外逻辑电路,可以提高在单

位时间内的数据流量,即所谓的增加带宽。EDO正是在这个方

面作出了尝试。

扩展数据输出(Extendeddataout--EDO,有时也称为超页模式

一hypermode)DRAM,和突发式EDO(BustEDO-BEDO)DRAM

是两种基于页模式内存的内存技术。EDO大约一年前被

引入主流PC,从那以后成为许多系统厂商的主要内存选择。BEDO

相对更新一些,对市场的吸引还未能达到EDO的水平。EDO的

工作方式颇类似于FPMDRAM:先触发内存中的一行,然后触发

所需的那一列。但是当找到所需的那条信息时,EDODRAM不是

将该列变为非触发状态而且关闭输出缓冲区(这是FPMDRAM采取

的方式),而是将输出数据缓冲区保持开放,直到下一列存取或

下一读周期开始。由于缓冲区保持开放,因而EDO消除了等待状

态,且突发式传送更加迅速。EDO还具有比FPMDRAM的6-3-3-3

更快的理想化突发式读周期时钟安排:6-2-2-2。这使得在66MHz

总线上从DRAM中读取一组由四个元素组成的数据块时能节省3

个时钟周期。EDO易于实现,而且在价格上EDO与FPM没有什么

差别,所以没有理由不选择EDO。BEDODRAM比EDO能更大程度

地改善FPM的时钟周期。由于大多数PC应用程序以四周期突发

方式访问内存,以便填充高速缓冲内存(系统内存将数据填充至

L2高速缓存,如果没有L2高速缓存,则填充至CPU),所以一

旦知道了第一个地址,接下来的三个就可以很快地由DRAM提供。

BEDO最本质的改进是在芯片上增加了一个地址计数器,用来跟

踪下一个地址。BEDO还增加了流水线级,允许页访问周期被划

分为两个部分。对于内存读操作,第一部分负责将数据从内存阵

列中读至输出级(第二级锁存),第二部分负责从这一锁存将数据

总线驱动至相应的逻辑级别。因为数据已经在输出缓冲区内,所

以访问时间得以缩短。BEDO能达到的最大突发式时钟安排为

5-1-1-1(采用52nsBEDO和66-MHz总线)比优化EDO内存又节省

了四个时钟周期。

RAM是如何工作的

实际的存储器结构由许许多多的基本存储单元排列成矩阵形式,

并加上地址选择及读写控制

等逻辑电路构成。当CPU要从存储器中读取数据时,就会选择存

储器中某一地址,并将该地址上存储单元所存储的内容读走。

早期的DRAM的存储速度很慢,但随着内存技术的飞速发展,随

后发展了一种称为快速页面模式(FastPageMode)的DRAM技

术,称为FPDRAM。FPM内存的读周期从DRAM阵列中某一行的触

发开始,然后移至内存地址所指位置的第一列并触发,该位置即

包含所需要的数据。第一条信息需要被证实是否有效,然后还需

要将数据存至系统。一旦发现第一条正确信息,该列即被变为非

触发状态,并为下一个周期作好准备。这样就引入了“等待状态”,

因为在该列为非触发状态时不会发生任何事情(CPU必须等待内

存完成一个周期)。直到下一周期开始或下一条信息被请求时,

数据输出缓冲区才被关闭。在快页模式中,当预测到所需下一条

数据所放位置相邻时,就触发数据所在行的下一列。下一列的触

发只有在内存中给定行上进行顺序读操作时才有良好的效果。

从50纳秒FPM内存中进行读操作,理想化的情形是一个以

6-3-3-3形式安排的突发式周期(6个时钟周期用于读取第一个

数据元素,接下来的每3个时钟周期用于后面3个数据元素)。

第一个阶段包含用于读取触发行列所需要的额外时钟周期。一旦

行列被触发后,内存就可以用每条数据3个时钟周期的速度传

送数据了。FPRAM虽然速度有所提高,但仍然跟不上新型高速

的CPU。很快又出现了EDORAM和SDRAM等新型高速的内存芯片。

介绍处理器高速缓存的有关知识

所谓高速缓存,通常指的是Level2高速缓存,或外部高速缓存。

L2高速缓存一直都属于

速度极快而价格也相当昂贵的一类内存,称为SRAM(静态RAM),

用来存放那些被CPU频繁使用的数据,以便使CPU不必依赖于

速度较慢的DRAM。

最简单形式的SRAM采用的是异步设计,即CPU将地址发送给高

速缓存,由缓存查找这个地

址,然后返回数据。每次访问的开始都需要额外消耗一个时钟周

期用于查找特征位。这样,异步高速缓存在66MHz总线上所能达

到的最快响应时间为3-2-2-2,而通常只能达到4-2-2-2。同步

高速缓存用来缓存传送来的地址,以便把按地址进行查找的过程

分配到两个或更多个时钟周期上完成。SRAM在第一个时钟周期

内将被要求的地址存放到一个寄存器中。在第二个时钟周期内,

SRAM把数据传送给CPU。由于地址已被保存在一个寄存器中,所

以接下来同步SRAM就可以在CPU读取前一次请求的数据同时接

收下一个数据地址。这样,同步SRAM可以不必另花时间来接收

和译码来自芯片集的附加地址,就“喷出”连续的数据元素。优

化的响应时间在66MHz总线上可以减小为2-1-1-L

另一种类型的同步SRAM称为流水线突发式(pipelinedburst)。

流水线实际上是增加了一个用来缓存从内存地址读取的数据的

输出级,以便能够快速地访问从内存中读取的连续数据,而省去

查找内存阵列来获取下一数据元素过程中的延迟。流水线对于顺

序访问模式,如高速缓存的行填充(linefill)最为高效。

什么是ECC内存

ECC是ErrorCorrectionCoding或ErrorChechingand

Correcting的缩写,它代表具有自动纠错功能的内存。目前的

ECC存储器一般只能纠正一位二进制数的错误。Intel公司的

82430HX芯片组可支持ECC内存,所以采用82430HX芯片的主板

一般都可以安装使用ECC内存,由于ECC内存成本比较高,所以

它主要应用在要求系统运算可*性比较高的商业计算机中。由于

实际上存储器出错的情况不会经常发生,所以一般的家用计算机

不必采用ECC内存,还有不少控制电路芯片不能支持ECC内存,

所以有不少主机是不宜安装ECC内存的,用户应注意对ECC内

存不要盲从。

SDRAM能与EDORAM混用吗

SDRAM是新一代的动态存储器,又称为同步动态存储器或同步

DRAM。它可以与CPU总线使用同一个时钟,而EDO和FPM存储

器则与CPU总线是异步的。目前SDRAM存储器的读写周期一般为

5-1-1-1。相比之下,EDO内存器一般为6-2-2-2。也就是说,SDRAM

的读写周期比EDO少4个,大约节省存储器读写时间28%,但实

际上由于计算机内其它设备的制约,使用SDRAM的计算机大约

可提高性能5~10%。虽然有不少主机支持SDRAM与EDO内存混

合安装方式,但是最好不要混用。原因是多数SDRAM只能在3.3V

下工作,而EDO内存则多数在5V下工作。虽然主机板上对DIMM

和SIMM分别供电,但它们的数据线总是要连在一起的,如果

SIMM(72线内存)与DIMM(168线SDRAM)混用,尽管开始系统可以

正常工作,但可能在使用一段时间后,会造成SDRAM的数据输入

端被损坏。

当然,如果你的SDRAM是宽电压(3V~5V)工作的产品,就不会出

现这种损坏情况。目前T1和SUMSUNG的某些SDRAM产品支持宽

电压工作方式,可以与EDO内存混用。

高速缓存一Cache介绍Cache的分级

随着CPU的速度的加快,它与动态存储器DRAM配合工作时往往

需要插入等待状态,这样难以发挥出CPU的高速度,也难以提高

整机的性能。如果采用静态存储器,虽可以解决该问题,但SRAM

价格高。在同样容量下,SARM的价格是DRAM的4倍。而且SRAM

体积大,集成度低。为解决这个问题,在386DX以上的主板中

采用了高速缓冲存储器一Cache技术。其基本思想是用少量的

SRAM作为CPU与DRAM存储系统之间的缓冲区,即Cache系统。

80486以及更高档微处理器的一个显著特点是处理器芯片内集成

了SRAM作为Cache,由于这些Cache装在芯片内,因此称为片

内Cache。486芯片内Cache的容量通常为8K。高档芯片如

Pentium为16KB,PowerPC可达32KB。Pentium微处理器进一步

改进片内Cache,采用数据和双通道Cache技术,相对而言,片

内Cache的容量不大,但是非常灵活、方便,极大地提高了微处

理器的性能。片内Cache也称为一级Cache。由于486,586等

高档处理器的时钟频率很高,一旦出现一级Cache未命中的情

况,性能将

明显恶化。在这种情况下采用的办法是在处理器芯片之外再加

Cache,称为二级Cache。二级Cache实际上是CPU和主存之间

的真正缓冲。由于系统板上的响应时间远低于CPU的速度,如果

没有二级Cache就不可能达到486,586等高档处理器的理想速

度。二级Cache的容量通常应比一级Cache大一个数量级以上。

在系统设置中,常要求用户确定二级Cache是否安装及尺寸大小

等。二级Cache的大小一般为128KB、256KB或512KB。在486

以上档次的微机中,普遍采用256KB或512KB同步Cache。所谓

同步是指Cache和CPU采用了相同的时钟周期,以相同的速度同

步工作。相对于异步Cache,性能可提高30%以上。

什么是CACHE存储器

所谓Cache,即高速缓冲存储器,是位于CPU和主存储器

DRAM(DynamicRAM)之间的规模较小的但速度很高的存储器,通

常由SRAM组成。SRAM(StaticRAM)是静态存储器的英文缩写。

由于SRAM采用了与制作CPU相同的半导体工艺,因此与动态存

储器DRAM比较,SRAM的存取速度快,但体积较大,价格很高。

由于动态RAM组成的主存储器的读写速度低于CPU的速度,而

CPU每执行一条指令都要访问一次或多次主存,所以CPU总是要

处于等待状态,严重地降低了系统的效率。采用Cache之后,在

Cache中保存着主存储器内容的部分副本,CPU在读写数据时,

首先访问Cache。由于Cache的速度与CPU相当,因此CPU就能

在零等待状态下迅速地完成数据的读写。只有Cache中不含有

CPU所需的数据时,CPU才去访问主存。CPU在访问Cache时找

到所需的数据称为命中,否则称为未命中。因此,访问Cache的

命中率则成了提高效率的关键。而提高命中率则取决于Cache存

储器的映象方式和Cache内容替换的算法等一系列因素。

对内存扩容时应遵循哪些规则

对内存扩充容量时,应遵循下面的一些规则:

1.对大多数PC机来说,不能在同一组Bank内(每组包括两到四

个插座)将不同大小的SIMM条混合在一起。很多PC机都可安装

不同容量的SIMM,但装在PC机同一组中的所有SIMM必须具有

相同的容量,例如,对一个四插槽组来说,PC机一般既可接受

1MB的SIMM条,也可接受4MB的SIMM条,可在该组的每个槽

内安装1MBSIMM,则这一组共可容纳4MB内存。也可在该组每

个槽内安装4MBSIMM,则这一组共可容纳16MB内存。但是,不

能为了得到10MB内存,在两个槽内插入1MB的SIMM条,而在另

两个槽中插入4MB的SIMM条。

2.对于很多PC机来说,若把不同速度的SIMM混合在一起,即使

它们的容量相同也会带来麻烦。例如,计算机中已有运行速度为

60纳秒(ns)的4MB内存,而文档中说70ns的SIMM也能工作。

如果在母板的空闲内存槽中再插入速度为70ns的SIMM条,机器

会拒绝引导或在启动后不久就陷于崩溃。对于某些机器来说,若

把速度低的SIMM放至第一组,则可解决速度混合问题。计算机

会按最低速度存取,剩余部分不会再有用。

3.对于大多数PC机来说,必须将一组的所有插槽都插满。或者

将一组全部置空(当然第一组不行)。在一组中不能只装一部分。

4.PC机可接受的SIMM大小有一个上限(最大值可从PC机说明书

中找到。若没有说明书,唯一的方法就是从实践中找到最大值

了)。何谓30线、72线、168线内存条内存条;30线;72线;

168线介绍30线、72线、168线内存条的有关知识及相互之间

的区别条形存储器是把一些存储器芯片焊在一小条印制电路板

上做成的,即称之为内存条,所谓内存条线数即引脚数,按引脚

数不同可把内存条分为30线的内存条、72线的内存条(SIMM,即

SigleiniineMemoryModale)和168线的内存条(DIMM,即Double

inlineMemoryModule)o内存条的引脚数必须与主板上内存槽

的插脚数相匹配,内存条插槽也有30线、72线和168线三种。

30线内存条提供8位有效数据位。常见容量有256KB.1MB和4MB。

72线的内存条体积稍大,提供32位的有效数据位。常见容量有

4MB、8MB、16MB和32MB。按下按键你可以看到72线内存条的外

观形状。168线的内存条体积较大,提供64位有效数据位。

如何识别Cache存储器芯片标志

目前微机系统中,常用的静态RAM的容量有8Kx8位(64Kbit)、

32Kx8(256Kbit)位以及64Kx8(512Kbit)位三种芯片,存取时

间(周期)为15ns到30ns。以上参数在静态SRAM芯片上常标注

为:XX64-25(XX65-25)、XX256-15(XX257-15).XX512-15等。

以XX256-15为例,其中“256”表示容量(单位为Kbit),“15”

表示存取时间(单位为ns)。在表示SRAM存储器容量的数值中,

“64”与“65”相同,都表示该芯片的容量为64Kbit,即8KB。

同理,“256”与“257”的含义也相同,即该芯片的容量为32KB。

例如在华硕PVI686SP3主板上使用的SRAM芯片为W24257AK-15,

即该芯片的容量为32Kx8位,存取速度为15ns。

如何用软件的方法检测Cache?

检测;高速缓存;Cache介绍用软件检测Cache的方法,主板上

Cache的大小和有无很难用一般方法判断,尤其是有的主板连

BIOS都被不法经销商修改过以方便作假。486时代常用的拔插法

现在也不灵了——奔腾主板上很多标称256K的Cache芯片都是

直接SMT(表面安装)上去的,无法拔插。测试Cache的软件确实

有一些,如CCT等,但普通用户很难得到这些专业软件。

2.分类认识内存

内存作为微型计算机的重要部件之一,已从早期的普通内存,发

展到目前的同步动态内存,还有越来越广泛地应用于多媒体领域

的RDRAM与后来的SDRAMII、DDRRAMO

内存大致的分类情况如下:

1.FPM(FastPageMode)

FPM(快页模式)是较早的个人计算机普遍使用的内存,它每隔3

个时钟脉冲周期传送一次数据。现在已很少见到使用这种内存的

计算机系统了。

2.EDO(ExtendedDataOut)

EDO(扩展数据输出)内存取消了主板与内存两个存储周期之间的

时间间隔,每隔2个时钟脉冲周期传输一次数据,大大地缩短了

存取时间,使存取速度提高30%,达到60ns。EDO内存主要用

于72线的SIMM内存条,以及采用EDO内存芯片的PCI显示卡(参

阅本书后面的内容)。

注:EDO内存条是普通DRAM内存的改进型,它比普通内存提高

速度约10%20%左右。当它在完成某一单元信息的读写之前,能

提前读写下一单元的信息,这样就提高了内存的读写速度。但只

是在普通内存的基础上改进了它的读写方式,但它的读写速度却

仍然不够快,只能达到50ns60ns之间。对于CPU的几ns的速度

来说,仍然存在着很大的差别。

这种内存流行在486以及早期的奔腾计算机系统中,它有72线

和168线之分,采用5V电压,带宽32bit,可用于IntelFX/VX

芯片组主板上,所以某些使用奔腾100/133的计算机系统目前还

在使用它。不过要注意的是,由于它采用5V电压,跟下面将要

介绍的SDRAM不同(SDRAM为3.3v),两者混合使用时就会很容

易会被烧毁,因此在使用前最好了解一下该主板使用的是3.3v

还是5V电压。

3.S(Synchronous)DRAM

SDRAM(同步动态随机存储器)是目前奔腾计算机系统普遍使用

的内存形式。SDRAM将CPU与RAM通过一个相同的时钟锁在一起,

使RAM和CPU能够共享一个时钟周期,以相同的速度同步工作,

与EDO内存相比速度能提高50%。

注:SDRAM采用的是新型的64位数据读写形式,内存条的引脚

为168线,采用双列直插式的DIMM内存条,读写速度最高达到

了10ns,是目前最快的内存芯片,同时也是奔腾II和奔腾III

计算机系统首选的内存条。

随着SDRAM的问世,快页模式(FPM)DRAM被很彻底打入了冷宫。

由于高效内存集成电路的出现和为优化的奔腾CPU运行效能而

设计的INTELHX、VX等核心逻辑芯片组的支持,EDODRAM被

广泛采用了,它采用了一种特殊的内存读出电路控制逻辑,在读

写一个地址单元时,同时启动下一个连续地址单元的读写周期。

从而节省了重选地址的时间,使存储总线的速率提高到40MHz。

也就是说,因此说与快页内存相比性能提高了将近15%~30%,

而其制造成本却与之相近,但是也只是辉煌了一时,面市的时间

将极为短暂,这是为什么呢?因此不久之后市场上主流CPU的主

频高达200MHz以上。为优化CPU的运行效能,总线时钟频率至

少要达到66MHz以上,多媒体应用程序以及Windows95/97/98

和WindowsNT操作系统对内存的要求也越来越高,为缓解速度

不够的瓶颈只有采用新的内存结构,否则就不能支持高速总线时

钟频率,而不必于插入指令等待周期,在理论上内存的速度需要

与CPU频率同步,即与CPU共享一个时钟周期的同步动态内存

(SynchronousDRAMS),所以SDRAM应运而生,与其它内存结构

相比,性能/价格比最高,最终取代了它们成为了内存发展一个

时期内的主流。

SDRAM基于双存储体结构,内含两个交错的存储阵列,当CPU从

一个存储体或阵列访问数据时,另一个就已为读写数据做好了准

备,通过这两个存储阵列的紧密切换,读取效率就能得到成倍的

提高。SDRAM的速度早就超过了100MHz,存储时间达到5〜8ns

毫不费力,现在128MB的SDRAM内存条也是大量上市,SDRAM

占据市场的主导地位已是不可否认的事实,其价格也在大幅下

降。;二二

SDRAM不仅可用作主存,在显示卡上的内存方面也有广泛应用。

对前者来说,数据带宽越宽,同时处理的数据就越多,显示的信

息就越多,显示品质也就越高。在此之前的计算机系统还用过可

同时读写的双端口视频内存(VRAM)来提高带宽,但这种内存成本

高,应用受很大限制。因此在一般显示卡上,廉价的DRAM和高

效的EDODRAM仍然还在应用着。但随着64位显示卡的上市,带

宽已扩大到EDODRAM所能达到的带宽的极限,要达到更高的1600

x1200的分辨率,而又尽量降低成本,就只能采用频率达66MHz、

高带宽的SDRAM了。SDRAM还应用了共享内存结构(UMA),这在

很大程度上降低了系统成本,因为许多高性能显示卡价格高昂,

就是因为其专用显示内存成本极高所致,而UMA技术将利用主存

作显示内存,不再需要增加专门显示内存,因而降低了成本。

注:SDRAM与用作Cache的SRAM是两个不同的概念,SRAM的全

称是StaticRAM(静态RAM),速度虽快,但成本高,不适合做主

存。

4.DDRSDRAM(SDRAMII)

DDR(DoubleDataRage双数据率)也就是SDRAMSDRAMH,是

SDRAM的更新换代产品,它允许在时钟脉冲的上升沿和下降沿传

输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速

度,并具有比SDRAM多一倍的传输速率和内存带宽,如64bit内

存接口200MHzDDRSDRAM比PCI00SDRAM的内存带宽高一倍,

266MHzDDRSDRAM的内存带宽更是达到了2.12GB/soDDRSDRAM

比800MHzRDRAM的内存带宽还要高,采用2.5v工作电压,价格

也便宜非常多。过去,DDRSDRAM只是应用在显示卡上,现在由

于DDRSDRAM标准已定制好,所以正有许多主板芯片组支持使用

它。不过,第一款支持DDRSDRAM的芯片组并不是Intel推出的。

而是由Micron推出的,其名称为SamuraiDDR芯片,其性能的

优秀性无论是在商业,还是游戏运行方面都赶得上Inteli840

芯片组。但后者提供双RDRAM通道,可高达3.2GB/s的内存带

宽,比SamuraiDDR266MHzDDRSDRAM提供的2.12G/秒的内

存带宽高出33%,整体性能也要好一些,这其是因为RDRAM的潜

伏等待时间要比SDRAM长,所以PC133SDRAM(参阅下面的内容)

和DDRSDRAM使得RDRAM在低端和高端系统上的优势全无,而

DDRSDRAM更是成为了市场的主流。如,现代电子出品的64MBDDR

SDRAM在128MB内存总线,4Mxl6颗,工作频率为333MHz,提

供了5.3GB/s的数据带宽,市场前景不用说了,一定会是不错

的。

5.RDRAM(RambusDRAM)

RDRAM(存储器总线式动态随机存储器)是Rambus公司开发的具

有系统带宽、芯片到芯片接口设计的新型DRAM,它能在很高的

频率范围下通过一个简单的总线传输数据,同时使用低电压信

号,在高速同步时钟脉冲的两边沿传输数据。

6.FlashMemory

FlashMemory(闪速存储器)是一种新型半导体存储器,主要特点

是在不加电的情况下长期保持存储的信息。就其本质而言,Flash

Memory属于EEPROM(电擦除可编程只读存储器)类型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论