




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省德阳市第五中学数学高二第二学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图象向左平移个单位长度,横坐标伸长为原来的2倍得函数的图象,则在下列区间上为单调递减的区间是()A. B. C. D.2.已知,则()A.1 B. C. D.3.设复数,是的共轭复数,则()A. B. C.1 D.24.已知变量之间的线性回归方程为,且变量之间的一组相关数据如表所示,则下列说法错误的是()A.变量之间呈现负相关关系B.的值等于5C.变量之间的相关系数D.由表格数据知,该回归直线必过点5.“因为指数函数是增函数(大前提),而是指数函数(小前提),所以函数是增函数(结论)”,上面推理的错误在于A.大前提错误导致结论错 B.小前提错误导致结论错C.推理形式错误导致结论错 D.大前提和小前提错误导致结论错6.设为虚数单位,则的展开式中含的项为()A. B. C. D.7.已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞)8.设函数可导,则等于()A.B.C.D.9.已知的展开式中,含项的系数为70,则实数a的值为()A.1 B.-1 C.2 D.-210.已知是两个非空集合,定义集合,则结果是()A. B. C. D.11.同学聚会时,某宿舍的4位同学和班主任老师排队合影留念,其中宿舍长必须和班主任相邻,则5人不同的排法种数为()A.48 B.56 C.60 D.12012.已知定义在上的连续奇函数的导函数为,当时,,则使得成立的的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数满足方程,则的最小值为____________.14.已知,若在(0,2)上有两个不同的,则k的取值范围是_____.15.在如图三角形数阵中,从第3行开始,每一行除1以外,其它每一个数字是它上一行的左右两个数字之和.已知这个三角形数阵开头几行如图所示,若在此数阵中存在某一行,满足该行中有三个相邻的数字之比为,则这一行是第__________行(填行数).16.已知向量,,.若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求的值;(2)将函数的图象沿轴向右平移个单位长度,得到函数的图象,求在上的最大值和最小值.18.(12分)已知函数.(1)求函数的极值;(2)设函数.若存在区间,使得函数在上的值域为,求实数的取值范围.19.(12分)设,其中,,与无关.(1)若,求的值;(2)试用关于的代数式表示:;(3)设,,试比较与的大小.20.(12分)(1)求证:当时,;(2)证明:不可能是同一个等差数列中的三项.21.(12分)已知函数,曲线在点处的切线方程为.(Ⅰ)求的值;(Ⅱ)求函数的极大值.22.(10分)设(Ⅰ)求的单调区间.(Ⅱ)当时,记,是否存在整数,使得关于的不等式有解?若存在求出的最小值,若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
先利用辅助角公式将函数化为的形式,再写出变换后的函数,最后写出其单调递减区间即可.【题目详解】的图象向左平移个单位长度,横坐标伸长为原来的2倍变换后,在区间上单调递减故选A【题目点拨】本题考查三角函数变换,及其单调区间.属于中档题.2、C【解题分析】
由二项式定理可知,为正数,为负数,令代入已知式子即可求解.【题目详解】因为,由二项式定理可知,为正数,为负数,所以.故选:C【题目点拨】本题考查二项式定理求系数的绝对值和;考查运算求解能力;属于基础题.3、A【解题分析】
先对进行化简,然后得出,即可算出【题目详解】所以,所以故选:A【题目点拨】本题考查的是复数的运算,较简单.4、C【解题分析】分析:根据线性回归方程的性质依次判断各选项即可.详解:对于A:根据b的正负即可判断正负相关关系.线性回归方程为,b=﹣0.7<0,负相关.对于B:根据表中数据:=1.可得=2.即,解得:m=3.对于C:相关系数和斜率不是一回事,只有当样本点都落在直线上是才满足两者相等,这个题目显然不满足,故不正确.对于D:由线性回归方程一定过(,),即(1,2).故选:C.点睛:本题考查了线性回归方程的求法及应用,属于基础题,对于回归方程,一定要注意隐含条件,样本中心满足回归方程,再者计算精准,正确理解题意,应用回归方程对总体进行估计.5、A【解题分析】试题分析:大前提:指数函数是增函数错误,只有在时才是增函数考点:推理三段论6、A【解题分析】
利用二项展开式,当时,对应项即为含的项.【题目详解】因为,当时,.【题目点拨】本题考查二项式定理中的通项公式,求解时注意,防止出现符号错误.7、C【解题分析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.8、C【解题分析】,故选C.9、A【解题分析】
分析:由题意结合二项式展开式的通项公式得到关于a的方程,解方程即可求得实数a的值.详解:展开式的通项公式为:,由于,据此可知含项的系数为:,结合题意可知:,解得:.本题选择A选项.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.10、C【解题分析】
根据定义集合分析元素特征即可得解.【题目详解】因为表示元素在中但不属于,那么表示元素在中且在中即,故选C.【题目点拨】本题考查了集合的运算,结合题中给出的运算规则即可进行运算,属于基础题,11、A【解题分析】
采用捆绑法,然后全排列【题目详解】宿舍长必须和班主任相邻则有种可能,然后运用捆绑法,将其看成一个整体,然后全排列,故一共有种不同的排法故选【题目点拨】本题考查了排列中的位置问题,运用捆绑法来解答即可,较为基础12、C【解题分析】
根据时可得:;令可得函数在上单调递增;利用奇偶性的定义可证得为偶函数,则在上单调递减;将已知不等式变为,根据单调性可得自变量的大小关系,解不等式求得结果.【题目详解】当时,令,则在上单调递增为奇函数为偶函数则在上单调递减等价于可得:,解得:本题正确选项:【题目点拨】本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设复数根据复数的几何意义可知的轨迹为圆;再根据点和圆的位置关系,及的几何意义即可求得点到圆上距离的最小值,即为的最小值.【题目详解】复数满足方程,设(),则,在复平面内轨迹是以为圆心,以2为半径的圆;,意义为圆上的点到的距离,由点与圆的几何性质可知,的最小值为,故答案为:.【题目点拨】本题考查了复数几何意义的综合应用,点和圆的位置关系及距离最值的求法,属于中档题.14、【解题分析】分析:先将含有绝对值的函数转化为一元一次函数和二元一次函数的分段函数的形式,再利用一元一次函数与二元一次函数的单调性加以解决详解:不妨设在是单调函数,故在上至多一个解若则,故不符合题意,由可得,由可得,故答案为点睛:本题主要考查的知识点是函数零点问题,求参量的取值范围,在解答含有绝对值的题目时要先去绝对值,分类讨论,然后再分析问题,注意函数单调性与奇偶性和零点之间的关系,适当注意函数的图像,本题有一定难度15、98【解题分析】
通过杨辉三角可知每一行由二项式系数构成,于是可得方程组,求出行数.【题目详解】三角形数阵中,每一行的数由二项式系数,组成.如多第行中有,,那么,解得,因此答案为98.【题目点拨】本题主要考查杨辉三角,二项式定理,意在考查学生数感的建立,计算能力及分析能力,难度中等.16、.【解题分析】分析:先计算出,再利用向量平行的坐标表示求的值.详解:由题得,因为,所以(-1)×(-3)-4=0,所以=.故答案为.点睛:(1)本题主要考查向量的运算和平行向量的坐标表示,意在考查学生对这些知识的掌握水平.(2)设=,=,则||.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1,(2)最小值,最大值.【解题分析】分析:(1)由降幂公式化简表达式,得,利用辅助角公式化简三角函数式,最后代入求解。(2)根据三角函数平移变换,得到平移后解析式为,利用整体思想求得取值范围;进而得到的最大值与最小值。详解:(1),则.(2)函数平移后得到的函数,由题可知,.当即时,取最小值,当即时,取最大值.点睛:本题综合考查了二倍角公式、降幂公式在三角函数化简中的应用,三角函数平移变换及在某区间内最值的求法,知识点综合性强,属于简单题。18、(1)极小值为,没有极大值.(2)【解题分析】
(1)根据题意,先对函数进行求导,解出的根,讨论方程的解的左右两侧的符号,确定极值点,从而求解出结果。(2)根据题意,将其转化为在上至少有两个不同的正根,再利用导数求出的取值范围。【题目详解】解:(1)定义域为,,时,,时,,∴在上是减函数,在上是增函数,∴的极小值为,没有极大值.(2),则,令,则.当时,,(即)为增函数,又,所以在区间上递增.因为在上的值域是,所以,,,则在上至少有两个不同的正根.,令,求导得.令,则,所以在上递增,,,当时,,∴,当时,,∴,所以在上递减,在上递增,所以,所以.【题目点拨】本题主要考查利用导数求函数的极值以及利用导数解决与存在性相关的综合问题,在解决这类问题时,函数的单调性、极值是解题的基础,在得到单调性的基础上经过分析可使问题得到解决。19、(1);(2);(3).【解题分析】分析:(1)由,即可求出p;(2)当时,,两边同乘以,再等式两边对求导,最后令即可;(3)猜测:,利用数学归纳法证明.详解:(1)由题意知,所以.(2)当时,,两边同乘以得:,等式两边对求导,得:,令得:,即.(3),,猜测:,当时,,,,此时不等式成立;②假设时,不等式成立,即:,则时,所以当时,不等式也成立;根据①②可知,,均有.点睛:利用数学归纳法证明等式时应注意的问题(1)用数学归纳法证明等式其关键点在于弄清等式两边的构成规律,等式两边各有多少项,初始值n0;(2)由n=k到n=k+1时,除等式两边变化的项外还要充分利用n=k时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.20、(1)证明过程详见试题解析;(2)证明过程详见试题解析.【解题分析】
(1)利用综合法证明即可;(2)利用反证法证明,假设是同一个等差数列中的三项,分别设为am,an,ap,推出为无理数,又为有理数,矛盾,即可证明不可能是等差数列中的三项.【题目详解】解:(1)∵()2=2a+2•,0,0且a+2≠a﹣2,∴,∴2(2)假设是同一个等差数列中的三项,分别设为am,an,ap,则为无理数,又为有理数,矛盾.所以,假设不成立,即不可能是同一个等差数列中的三项.【题目点拨】反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得.应用反证法证明的具体步骤是:①反设:作出与求证结论相反的假设;②归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;③结论:说明反设成立,从而肯定原命题成立.21、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)将点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心电图操作与诊断
- 婚庆材料供应协议
- 阿克苏职业技术学院《临床医学概论二》2023-2024学年第一学期期末试卷
- 陇东学院《社科信息检索与利用》2023-2024学年第一学期期末试卷
- 陕西学前师范学院《法医病理学》2023-2024学年第二学期期末试卷
- 陕西工商职业学院《英语视听四》2023-2024学年第二学期期末试卷
- 陕西旅游烹饪职业学院《病原生物学与医学免疫学》2023-2024学年第一学期期末试卷
- 陕西省合阳县2024-2025学年初三下第三次考试物理试题含解析
- 陕西省汉中学市南郑县市级名校2025届初三第一次质量调研普查考试化学试题含解析
- 手术室护士成长管理
- 2024年中国邮政集团有限公司校园招聘考试试题参考答案
- DZ∕T 0399-2022 矿山资源储量管理规范(正式版)
- 华为灰度管理法
- 2024年黑龙江省哈尔滨市中考二模化学试题
- 2024糖尿病酮症酸中毒诊断和治疗课件
- 颈后路手术护理查房
- 《采购渠道选择》课件
- 汽车消费调查问卷
- 《车用动力电池回收利用单体拆解技术规范》
- 艰难梭菌感染的流行病学调查
- 《手术体位摆放》课件
评论
0/150
提交评论