版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京师范大学蚌埠附属学校2024届数学高二第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数z=1+i(i是虚数单位),则复数z+1A.12 B.12i C.2.已知命题是命题“若,则”的否命题;命题:若复数是实数,则实数,则下列命题中为真命题的是()A. B. C. D.3.设命题,,则为()A., B.,C., D.,4.已知函数是奇函数,当时,,当时,,则的解集时()A. B.C. D.5.设随机变量,若,则n=A.3 B.6 C.8 D.96.下列说法正确的是()A.命题“若,则”的否命题为:“若,则”B.已知是R上的可导函数,则“”是“x0是函数的极值点”的必要不充分条件C.命题“存在,使得”的否定是:“对任意,均有”D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题7.设点和直线分别是双曲线的一个焦点和一条渐近线,若关于直线的对称点恰好落在双曲线上,则该双曲线的离心率为()A.2 B. C. D.8.已知函数,若关于的方程有5个不同的实数解,则实数的取值范围是()A. B. C. D.9.在复平面内,复数(是虚数单位)对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.的展开式中,系数最小的项为()A.第6项 B.第7项 C.第8项 D.第9项11.已知、为双曲线C:的左、右焦点,点P在C上,∠P=,则A.2 B.4 C.6 D.812.设函数,则满足的的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的一条渐近线方程是,它的一个焦点与抛物线的焦点相同.则双曲线的方程为.14.不等式的解集为_______.15.已知表示两个不同的平面,为平面内的一条直线,则“构成直二面角”是“”的______条件(填“充分不必要”、“必要不充分”、“充要”“或”“既不充分也不必要”).16.若函数有两个极值点,其中,,且,则方程的实根个数为________个.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响某校随机抽取200名学生,对学习成绩和学案使用程度进行了调查,统计数据如下表所示:善于使用学案不善于使用学案合计学习成绩优秀40学习成绩一般30合计200已知随机抽查这200名学生中的一名学生,抽到善于使用学案的学生概率是0.6.参考公式:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(I)完成列联表(不用写计算过程);(Ⅱ)试运用独立性检验的思想方法分析有多大的把握认为学生的学习成绩与对待学案的使用态度有关?18.(12分)如图,四棱锥中,底面是梯形,,,底面点是的中点.(Ⅰ)证明:;(Ⅱ)若且与平面所成角的大小为,求二面角的正弦值.19.(12分)已知函数(且),.(1)函数的图象恒过定点,求点坐标;(2)若函数的图象过点,证明:方程在上有唯一解.20.(12分)已知二项式展开式中的第7项是常数项.(1)求;(2)求展开式中有理项的个数.21.(12分)在中,角所对的边分别为,其中(1)求;(2)求边上的高,22.(10分)如图,三棱柱中,,,(1)证明:;(2)若平面
平面,,求点到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】由z=1+i,得z+1z=1+i+2、D【解题分析】分析:先判断命题p,q的真假,再判断选项的真假.详解:由题得命题p:若a>b,则,是假命题.因为是实数,所以所以命题q是假命题,故是真命题.故答案为D.点睛:(1)本题主要考查四个命题和复数的基本概念,考查复合命题的真假,意在考查学生对这些知识的掌握水平.(2)复合命题的真假判断口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.3、C【解题分析】
根据全称量词命题的否定是存在量词命题,即得答案.【题目详解】全称量词命题的否定是存在量词命题,.故选:.【题目点拨】本题考查含有一个量词的命题的否定,属于基础题.4、A【解题分析】
对的范围分类讨论,利用已知及函数是奇函数即可求得的表达式,解不等式即可.【题目详解】因为函数是奇函数,且当时,所以当,即:时,,当,即:时,可化为:,解得:.当,即:时,利用函数是奇函数,将化为:,解得:所以的解集是故选A【题目点拨】本题主要考查了函数的奇偶性应用,还考查了分类思想及计算能力,属于中档题.5、D【解题分析】
根据随机变量,得到方程组,解得答案.【题目详解】随机变量,解得故答案选D【题目点拨】本题考查了二项分布的期望和方差,属于常考基础题型.6、B【解题分析】试题分析:对于A,命题“若,则”的否命题为:“若,则”,不满足否命题的定义,所以A不正确;对于B,已知是R上的可导函数,则“”函数不一定有极值,“是函数的极值点”一定有导函数为,所以已知是上的可导函数,则“”是“是函数的极值点”的必要不充分条件,正确;对于C,命题“存在,使得”的否定是:“对任意,均有”,不满足命题的否定形式,所以不正确;对于D,命题“角的终边在第一象限角,则是锐角”是错误命题,则逆否命题为假命题,所以D不正确;故选B.考点:命题的真假判断与应用.7、C【解题分析】
取双曲线的左焦点为,设右焦点为,为渐近线,与渐近线的交点为关于直线的对称点设为,连接,运用三角形的中位线定理和双曲线的定义,离心率公式,计算可得所求值.【题目详解】如图所示,取双曲线的左焦点为,设右焦点为,为渐近线,与渐近线的交点为关于直线的对称点设为,连接,直线与线段的交点为,因为点与关于直线对称,则,且为的中点,所以,根据双曲线的定义,有,则,即,所以,故选:C.【题目点拨】本题主要考查了双曲线的离心率的求法,注意运用三角形的中位线定理和双曲线的定义,考查化简整理的运算能力,属于中档题.8、C【解题分析】
利用导数研究函数y=的单调性并求得最值,求解方程2[f(x)]2+(1﹣2m)f(x)﹣m=1得到f(x)=m或f(x)=.画出函数图象,数形结合得答案.【题目详解】设y=,则y′=,由y′=1,解得x=e,当x∈(1,e)时,y′>1,函数为增函数,当x∈(e,+∞)时,y′<1,函数为减函数.∴当x=e时,函数取得极大值也是最大值为f(e)=.方程2[f(x)]2+(1﹣2m)f(x)﹣m=1化为[f(x)﹣m][2f(x)+1]=1.解得f(x)=m或f(x)=.如图画出函数图象:可得m的取值范围是(1,).故答案为:C.【题目点拨】(1)本题主要考查利用导数求函数的单调性,考查函数图像和性质的综合运用,考查函数的零点问题,意在考查学生对这些知识的掌握水平和数形结合分析推理转化能力.(2)本题的解答关键有两点,其一是利用导数准确画出函数的图像,其二是化简得到f(x)=m或f(x)=.9、B【解题分析】,复数对应点为:.点在第二象限,所以B选项是正确的.10、C【解题分析】由题设可知展开式中的通项公式为,其系数为,当为奇数时展开式中项的系数最小,则,即第8项的系数最小,应选答案C。11、B【解题分析】本试题主要考查双曲线的定义,考查余弦定理的应用.由双曲线的定义得①,又,由余弦定理②,由①2-②得,故选B.12、C【解题分析】
试题分析:令,则,当时,,由的导数为,当时,在递增,即有,则方程无解;当时,成立,由,即,解得且;或解得,即为,综上所述实数的取值范围是,故选C.考点:分段函数的综合应用.【方法点晴】本题主要考查了分段函数的综合应用,其中解答中涉及到函数的单调性、利用导数研究函数的单调性、函数的最值等知识点的综合考查,注重考查了分类讨论思想和转化与化归思想,以及学生分析问题和解答问题的能力,试题有一定的难度,属于难题,本题的解答中构造新的函数,利用新函数的性质是解答的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】解:由已知得,14、【解题分析】
原不等式等价于,解之即可.【题目详解】原不等式等价于,解得或.所以不等式的解集为【题目点拨】本题考查分式不等式的解法,属基础题.15、必要不充分【解题分析】
根据直二面角的定义、面面垂直的判定理、充分性、必要性的定义可以直接判断.【题目详解】构成直二面角,说明平面互相垂直,但是不一定成立,比如这两个相交平面的交线显然是平面内的一条直线,它就不垂直于平面;当时,为平面内的一条直线,由面面垂直的判定定理可知:互相垂直,因此构成直二面角,故由可以推出构成直二面角,故“构成直二面角”是“”的必要不充分条件.故答案为:必要不充分【题目点拨】本题考查了必要不充分条件的判断,考查了面面垂直的判定定理.16、【解题分析】
根据有两个极值点可知有两个不等正根,即有两个不等正根,从而可得;采用换元的方式可知方程有两个不等实根,从而可将问题转化为与和共有几个交点的问题;通过确定和的范围可确定大致图象,从而通过与和的交点确定实根的个数.【题目详解】有两个极值点有两个不等正根即有两个不等正根且,令,则方程的判别式方程有两解,且,由得:,又且根据可得简图如下:可知与有个交点,与有个交点方程的实根个数为:个本题正确结果:【题目点拨】本题考查方程解的个数的求解问题,解决此类问题常用的方法是将问题转化为曲线与平行于轴直线的交点个数问题,利用数形结合的方法来进行求解;本题解题关键是能够确定极值的大致取值范围,从而确定函数的图象.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见详解(2)有99.9%的把握认为学生的学习成绩与对待学案的使用态度有关.【解题分析】
(1)由已知数据列列联表,
(2)由公式得:,结合参考数据下结论即可.【题目详解】(1)列联表:善于使用学案不善于使用学案合计学习成绩优秀405090学习成绩一般8030110合计12080200(2)由公式得:,故有99.9%的把握认为学生的学习成绩与对待学案的使用态度有关.【题目点拨】本题主要考查了列联表及的运算及用独立性检验的思想方法分析,属于中档题.18、(Ⅰ)见解析(Ⅱ)【解题分析】
(I)根据已知条件得到,,由此证得平面.从而证得,结合,证得平面,进而证得.(II)作出与平面所成的角,通过线面角的大小计算出有关的边长,作出二面角的平面角,解直角三角形求得二面角的正弦值.【题目详解】(Ⅰ)证明:因为平面,平面,所以.又由是梯形,,,知,而,平面,平面,所以平面.因为平面,所以.又,点是的中点,所以.因为,平面,平面,所以平面.因为平面,所以.(Ⅱ)解:如图所示,过作于,连接,因为平面,平面,所以,则平面,于是平面平面,它们的交线是.过作于,则平面,即在平面上的射影是,所以与平面所成的角是.由题意,.在直角三角形中,,于是.在直角三角形中,,所以.过作于,连接,由三垂线定理,得,所以为二面角的平面角,在直角三角形中,,.在直角三角形中,,所以二面角的正弦值为.【题目点拨】本小题主要考查线线垂直的证明,考查线面垂直的证明,考查线面角的应用,考查面面角的求法,属于中档题.19、(1);(2)证明见解析.【解题分析】试题分析:(1)结合对数函数的性质可得函数的图象恒过定点;(2)由题意结合函数的单调性和函数的值域即可证得题中的结论.试题解析:(1)解:∵当时,,说明的图象恒过点.(2)证明:∵过,∴,∴,∵分别为上的增函数和减函数,∴为上的增函数,∴在上至多有一个零点,又,∴在上至多有一个零点,而,,∴在上有唯一解.20、(1)(2)展开式中的有理项共有3项【解题分析】
(1)根据二项展开式的通项以及第项是常数项计算的值;(2)根据二项展开式的通项,考虑未知数的指数为整数的情况,然后判断有理项的项数.【题目详解】解:(1)二项式展开式的通项为第7项为常数项,(2)由(1)知,若为有理项,则为整数,为6的倍数,,共三个数,展开式中的有理项共有3项.【题目点拨】本题考查二项展开式的通项的应用,难度一般.二项展开式中的有理项的分析的主要依据是:未知数的指数为整数;二项展开式中的常数项的分析的主要依据是:未知数的指数为.21、(1);(2)【解题分析】
(1)利用同角三角函数的基本关系求出,再由正弦定理求出,即可得解;(2)首先由两角和的正弦公式求出,过作交于点,在中,,即可求出;【题目详解】解:(1)因为且,,,由正弦定理可得,即解得,因为,(2)如图,过作交于点,在中如图所示,在中,故边上的高为【题目点拨】本题考查同角三角函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《合作方案推介》课件
- 口腔科正畸护理
- 2024年山东省第三届中小学生海洋知识竞赛题库及答案(初中组第201-300题)
- 安全小活动总结报告
- 大学生IT专业职业规划
- 2型糖尿病胰岛素治疗
- 苏教版语文六下教学课件教学
- 《公司创业》课件
- 第三单元双基能力提升训练-六年级下册语文练测乐园(含答案)
- 《江东区国家税务局》课件
- 公共行政学网上学习行为300字
- 第四代篦冷机液压系统的故障与维护获奖科研报告
- 二次函数线段的最值课件
- 呼吸消化科科室现状调研总结与三年发展规划汇报
- 与复旦大学合作协议书
- 第五单元(知识清单)【 新教材精讲精研精思 】 七年级语文上册 (部编版)
- 缓冲托辊说明书
- 煤矿机电运输安全培训课件
- 2023年人教版新目标八年级英语下册全册教案
- 安抚(氟比洛芬酯注射液)-泌尿外科术后疼痛管理的基础药物
- 学前教育职业规划书
评论
0/150
提交评论