版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省颜锡祺中学2024届数学高二下期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知样本数据点集合为,样本中心点为,且其回归直线方程为,则当时,的估计值为()A. B. C. D.2.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的A.甲辰年 B.乙巳年 C.丙午年 D.丁未年3.某同学通过英语听力测试的概率为,他连续测试次,要保证他至少有一次通过的概率大于,那么的最小值是()A. B. C. D.4.下列等式中,错误的是()A. B.C. D.5.大学生小红与另外3名大学生一起分配到乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小红恰好分配到甲村小学的方法数为()A.3 B.18 C.12 D.66.函数的极值情况是().A.有极大值,极小值2 B.有极大值1,极小值C.无极大值,但有极小值 D.有极大值2,无极小值7.5人站成一列,甲、乙两人相邻的不同站法的种数为()A.18 B.24 C.36 D.488.已知复数在复平面内对应的点在第一象限,则实数m的取值范围是()A. B. C. D.9.某地区高考改革,实行“”模式,即“”指语文、数学、外语三门必考科目,“”指在化学、生物、政治、地理四门科目中必选两门,“”指在物理、历史两门科目中必选一门,则一名学生的不同选科组合有多少种?()A.种 B.种 C.种 D.种10.复数的实部与虚部分别为()A., B., C., D.,11.已知一段演绎推理:“因为指数函数是增函数,而是指数函数,所以是增函数”,则这段推理的()A.大前提错误 B.小前提错误 C.结论正确 D.推理形式错误12.已知函数(为自然对数的底数),.若存在实数,使得,且,则实数的最大值为()A. B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义在R上的偶函数,满足,若时,,则函数的零点个数为___________.14.已知向量与的夹角为60°,||=2,||=1,则|+2|=______.15.3名医生和9名护士被分配到3所学校为学生体检,每所学校分配1名医生和3名护士,不同的分配方法共有________种.16.已知,之间的一组数据如表表示,关于的回归方程是,则等于______01243.9714.1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左右顶点分别是,,点在椭圆上,过该椭圆上任意一点P作轴,垂足为Q,点C在的延长线上,且.(1)求椭圆的方程;(2)求动点C的轨迹E的方程;(3)设直线(C点不同A、B)与直线交于R,D为线段的中点,证明:直线与曲线E相切;18.(12分)某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.(1)求一名顾客在一次摸奖活动中获得元的概率;(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.19.(12分)已知实数a>0且a≠1.设命题p:函数f(x)=logax在定义域内单调递减;命题q:函数g(x)=x2﹣2ax+1在(,+∞)上为增函数,若“p∧q”为假,“p∨q”为真,求实数a的取值范围.20.(12分)已知函数.若是的极值点.(1)求在上的最小值;(2)若不等式对任意都成立,其中为整数,为的函数,求的最大值.21.(12分)如图,在三棱锥中,底面,且,,,、分别是、的中点.(1)求证:平面平面;(2)求二面角的平面角的大小.22.(10分)已知函数在处取得极大值为.(1)求的值;(2)求曲线在处的切线方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据线性回归直线过样本中心点,可得,然后代值计算,可得结果.【题目详解】由题可知:所以回归直线方程为当当时,故选:D【题目点拨】本题考查线性回归方程,掌握回归系数的求法以及回归直线必过样本中心点,属基础题.2、C【解题分析】
按照题中规则依次从2019年列举到2026年,可得出答案。【题目详解】根据规则,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故选:C。【题目点拨】本题考查合情推理的应用,理解题中“干支纪年法”的定义,并找出相应的规律,是解本题的关键,考查逻辑推理能力,属于中等题。3、B【解题分析】
由题意利用次独立试验中恰好发生次的概率计算公式以及对立事件发生的概率即可求得结果.【题目详解】由题意可得,,求得,∴,故选B.【题目点拨】本题主要考查次独立试验中恰好发生次的概率计算公式的应用,属于基础题.4、C【解题分析】分析:计算每一选项的左右两边,检查它们是否相等.详解:通过计算得到选项A,B,D的左右两边都是相等的.对于选项C,,所以选项C是错误的.故答案为C.点睛:本题主要考查排列组合数的计算,意在考查学生对这些基础知识的掌握水平和基本计算能力.5、C【解题分析】
分两种情况计算:有一人和小红同地,无人与小红同地.【题目详解】大学生小红与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,分两种情况计算:有一人和小红同地,无人与小红同地.小红恰好分配到甲村小学包含的基本事件个数.故选:C【题目点拨】本题主要考查排列组合的综合应用,意在考查学生对该知识的理解掌握水平和分析推理能力.6、A【解题分析】
求导分析函数导数的零点,进而求得原函数的单调性再判断即可.【题目详解】由题,函数定义域为,,令有.故在上单调递增,在上单调递减.在上单调递减,在上单调递增.且当时,;当时,故有极大值,极小值2.故选:A【题目点拨】本题主要考查了函数极值的求解,需要求导分析单调性.同时注意函数在和上分别单调递减.属于基础题.7、D【解题分析】
将甲、乙两人捆绑在一起,再利用排列公式得到答案.【题目详解】将甲、乙两人捆绑在一起,不同站法的种数为:故答案选D【题目点拨】本题考查了排列组合中的捆绑法,属于简单题.8、A【解题分析】
由实部虚部均大于0联立不等式组求解.【题目详解】解:复数在复平面内对应的点在第一象限,,解得.实数的取值范围是.故选:.【题目点拨】本题考查复数的代数表示法及其几何意义,考查不等式组的解法,是基础题.9、B【解题分析】
根据题意,分步进行分析该学生在“语文、数学、外语三门”、“化学、生物、政治、地理四门”、“物理、历史两门”中的选法数目,由分步计数原理计算可得答案.【题目详解】根据题意,分3步进行分析:①语文、数学、外语三门必考科目,有1种选法;②在化学、生物、政治、地理四门科目中必选两门,有种选法;③在物理、历史两门科目中必选一门,有种选法;则这名学生的不同选科组合有种.故选:B.【题目点拨】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.10、A【解题分析】分析:化简即可得复数的实部和虚部.详解:复数的实数与虚部分别为5,5.故选A.点睛:复数相关概念与运算的技巧(1)解决与复数的基本概念和性质有关的问题时,应注意复数和实数的区别与联系,把复数问题实数化是解决复数问题的关键.(2)复数相等问题一般通过实部与虚部对应相等列出方程或方程组求解.(3)复数的代数运算的基本方法是运用运算法则,但可以通过对代数式结构特征的分析,灵活运用i的幂的性质、运算法则来优化运算过程.11、A【解题分析】
分析该演绎推理的大前提、小前提和结论,结合指数函数的图象和性质判断正误,可以得出正确的答案.【题目详解】该演绎推理的大前提是:指数函数是增函数,小前提是:是指数函数,结论是:是增函数.其中,大前提是错误的,因为时,函数是减函数,致使得出的结论错误.故选:A.【题目点拨】本题考查了演绎推理的应用问题,解题时应根据演绎推理的三段论是什么,进行逐一判定,得出正确的结论,是基础题.12、C【解题分析】
解方程求得,结合求得的取值范围.将转化为直线和在区间上有交点的问题来求得的最大值.【题目详解】由得,注意到在上为增函数且,所以.由于的定义域为,所以由得.所以由得,画出和的图像如下图所示,其中由图可知的最大值即为.故选C.【题目点拨】本小题主要考查函数零点问题,考查指数方程和对数方程的解法,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
由题意得:的周期为2,且其图象关于轴对称,函数的零点个数即为函数与函数图象的交点个数,然后作出图象即可.【题目详解】由题意得:的周期为2,且其图象关于轴对称函数的零点个数即为函数与函数图象的交点个数,在同一坐标系中作出两函数的图象如下由图象观察可知,共有两个交点故答案为:2【题目点拨】一个复杂函数的零点个数问题常常是转化为两个常见函数的交点个数问题.14、【解题分析】
∵平面向量与的夹角为,∴.∴故答案为.点睛:(1)求向量的夹角主要是应用向量的数量积公式.(2)常用来求向量的模.15、10080【解题分析】
分析:首先为第一个学校安排医生和护士,再为第二个安排医生和护士,为第三个安排医生和护士,根据分步计数乘法原理可得结果.详解:为第一个学校安排医生和护士有种结果;为第二个安排医生和护士种结果;为第三个安排医生和护士种结果,根据分步计数原理可得,故答案为.点睛:本题考查组合式的应用、分步计数乘法原理的应用以及分组与分配问题,属于中档题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.16、0.6【解题分析】
根据表中数据,计算出,,代入到回归方程中,求出的值.【题目详解】根据表中数据,得到,,代入到回归方程中,得,解得.故答案为:.【题目点拨】本题考查线性回归方程过样本中心点,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)证明略;【解题分析】
(1)根据顶点坐标可知,将代入椭圆方程可求得,进而得到椭圆方程;(2)设,,可得到,将代入椭圆方程即可得到所求的轨迹方程;(3)设,可得直线方程,进而求得和点坐标;利用向量坐标运算可求得,从而证得结论.【题目详解】(1)由题意可知:将代入椭圆方程可得:,解得:椭圆的方程为:(2)设,由轴,可得:,即将代入椭圆方程得:动点的轨迹的方程为:(3)设,则直线方程为:令,解得:,即直线与曲线相切【题目点拨】本题考查直线与椭圆、直线与圆的综合应用问题,涉及到椭圆方程的求解、动点轨迹的求解问题、直线与圆位置关系的证明等知识;求解动点轨迹的常用方法是利用动点表示出已知曲线上的点的坐标,从而代入已知曲线方程整理可得动点轨迹.18、(1);(2)见解析【解题分析】
(1)根据古典概型概率计算公式可求得结果;(2)分别求出一名顾客摸球中奖元和不中奖的概率;确定所有可能的取值为:,,,,,分别计算每个取值对应的概率,从而得到分布列;利用数学期望计算公式求解期望即可.【题目详解】(1)记一名顾客摸球中奖元为事件从袋中摸出两只球共有:种取法;摸出的两只球均是红球共有:种取法(2)记一名顾客摸球中奖元为事件,不中奖为事件则:,由题意可知,所有可能的取值为:,,,,则;;;;随机变量的分布列为:【题目点拨】本题考查古典概型概率问题求解、离散型随机变量的分布列和数学期望的求解,关键是能够根据通过积事件的概率公式求解出每个随机变量的取值所对应的概率,从而可得分布列.19、【解题分析】
先分别求得p,q为真时的a的范围,再将问题转化为p,q一真一假时,分类讨论可得答案.【题目详解】∵函数f(x)=logax在定义域内单调递减,∴0<a<1.即:p:{a|0<a<1}.∵a>0且a≠1,∴¬p:{a|a>1},∵g(x)=x2﹣2ax+1在(,+∞)上为增函数,∴a.又∵a>0且a≠1,即q:{a|0<a}.∴¬q:{a|a且a≠1}.又∵“p∧q”为假,“p∨q”为真,∴“p真q假”或“p假q真”.①当p真q假时,{a|0<a<1}∩{a|a且a≠1}={a|a<1}..②当p假q真时,{a|a>1}∩{a|0<a}=∅,综上所述:实数a的取值范围是:{a|a<1}.【题目点拨】本题主要考查复合命题之间的关系,根据不等式的性质分别求得命题p,q为真时的参数的范围是解决本题的关键,考查分类讨论的思想,比较基础.20、(1)2;(2)2.【解题分析】分析:(1)求出函数的导数,求出a的值,根据函数的单调性求出函数的最小值即可;(2)问题转化为,令,,根据函数的单调性求出k的范围即可.详解:(1),由是的极值点,得,.易知在上单调递减,在上单调递增,所有当时,在上取得最小值2.(2)由(1)知,此时,,令,,,令,,在单调递增,且,,在时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贾生名谊文言文详解课件
- 2026年电气节能技术的市场竞争力与经济效益评估
- 2026春招:新媒体笔试题及答案
- 2026年电气设备的选型与安全评估
- 货运交通安全
- 医疗人员职业素养与职业规划
- 护理教育与护理人文关怀
- 货梯安全培训考核内容
- 医疗护理礼仪在医患关系中的意义
- 医疗行业品牌推广与营销
- 2025年电子工程师年度工作总结
- 2026年消防设施操作员之消防设备基础知识考试题库500道及完整答案(各地真题)
- 2026年电信运营商物资管理岗位面试题
- 2025年高职会计(成本核算)试题及答案
- 虫鼠害培训课件
- 2025学年上海市七年级语文上册作文题目汇编及解析
- 2026年河南经贸职业学院单招职业技能测试题库及参考答案详解
- ai写作与公文写作培训课件
- 栏杆安装施工方案示例
- JJF 2333-2025 恒温金属浴校准规范
- 2025年水工金属结构行业分析报告及未来发展趋势预测
评论
0/150
提交评论