版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省凤阳县二中数学高二下期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X表示取得次品的次数,则()A. B. C. D.2.一根细金属丝下端挂着一个半径为1cm的金属球,将它浸没底面半径为2cm的圆柱形容器内的水中,现将金属丝向上提升,当金属球被拉出水面时,容器内的水面下降了()A.cm B.cm C.cm D.cm3.设分别是定义在R上的奇函数和偶函数,且分别是的导数,当时,且,则不等式的解集是()A. B.C. D.4.已知离散型随机变量的分布列为则的数学期望为()A. B. C. D.5.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是()A. B.C. D.6.已知为两条不同的直线,为两个不同的平面,则()①若,,且∥,则∥;②若,∥,且∥,则;③若∥,,且,则∥;④若,,且,则.其中真命题的个数是()A. B. C. D.7.已知,,,记为,,中不同数字的个数,如:,,,则所有的的排列所得的的平均值为()A. B.3 C. D.48.随机变量服从正态分布,若,,则()A.3 B.4 C.5 D.69.若函数f(x)=2x+12xA.(-∞,-1) B.(C.(0,1) D.(1,+∞)10.二项式的展开式的各项中,二项式系数最大的项为()A. B.和C.和 D.11.从4名男生和2名女生中任选3人参加演讲比赛,用表示所选3人中女生的人数,则为()A.0 B.1 C.2 D.312.已知为虚数单位,复数满足,是复数的共轭复数,则下列关于复数的说法正确的是()A. B.C. D.复数在复平面内表示的点在第四象限二、填空题:本题共4小题,每小题5分,共20分。13.已知P是底面为正三角形的直三棱柱的上底面的中心,作平面与棱交于点D.若,则三棱锥的体积为_____.14.i为虚数单位,设复数z满足,则z的虚部是____15.设,则______.16.已知函数,若曲线在点处的切线经过圆的圆心,则实数的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)将个不同的红球和个不同的白球,放入同一个袋中,现从中取出个球.(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;(2)取出一个红球记分,取出一个白球记分,若取出个球的总分不少于分,则有多少种不同的取法;(3)若将取出的个球放入一箱子中,记“从箱子中任意取出个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到个红球并且恰有一次取到个白球的概率.18.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(a为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点,l和C交于A,B两点,求.19.(12分)对任意正整数,,定义函数满足如下三个条件:①;②;③.(1)求和的值;(2)求的解析式.20.(12分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.21.(12分)随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐,下表是西南地区某大学近五年的录取平均分与省一本线对比表:年份20142015201620172018年份代码12345省一本线505500525500530录取平均分533534566547580录取平均分与省一本线分差y2834414750(1)根据上表数据可知,y与t之间存在线性相关关系,求y关于t的线性回归方程;(2)据以往数据可知,该大学每年的录取分数X服从正态分布,其中为当年该大学的录取平均分,假设2019年该省一本线为520分,李华2019年高考考了569分,他很喜欢这所大学,想第一志愿填报,请利用概率与统计知识,给李华一个合理的建议.(第一志愿录取可能性低于,则建议谨慎报考)参考公式:,.参考数据:,.22.(10分)设为关于的方程的虚根,虚数单位.(1)当时,求、的值;(2)若,在复平面上,设复数所对应的点为,复数所对应的点为,试求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
首先把取一次取得次品的概率算出来,再根据离散型随机变量的概率即可算出.【题目详解】因为是有放回地取产品,所以每次取产品取到次品的概率为.从中取3次,为取得次品的次数,则,,选择D答案.【题目点拨】本题考查离散型随机变量的概率,解题时要注意二项分布公式的灵活运用.属于基础题.2、D【解题分析】
利用等体积法求水面下降高度。【题目详解】球的体积等于水下降的体积即,.答案:D.【题目点拨】利用等体积法求水面下降高度。3、C【解题分析】
构造函数,判断函数的单调性和奇偶性,脱离即可求得相关解集.【题目详解】根据题意,可设,则为奇函数,又当时,所以在R上为增函数,且,转化为,当时,则,当,则,则,故解集是,故选C.【题目点拨】本题主要考查利用抽象函数的相关性质解不等式,意在考查学生的分析能力和转化能力,难度中等.4、B【解题分析】
根据数学期望公式可计算出的值.【题目详解】由题意可得,故选B.【题目点拨】本题考查离散型随机变量数学期望的计算,意在考查对数学期望公式的理解和应用,考查计算能力,属于基础题.5、D【解题分析】
构造函数,利用函数导数判断函数的单调性,将代入函数,根据单调性选出正确的选项.【题目详解】构造函数,依题意,故函数在定义域上为增函数,由得,即,排除A选项.由得,即,排除B选项.由得,即,排除C,选项.由得,即,D选项正确,故选D.【题目点拨】本小题主要考查构造函数法比较大小,考查函数导数的概念,考查函数导数运算,属于基础题.6、B【解题分析】
根据空间直线与平面平行、垂直,平面与平面平行、垂直的判定定理和性质定理,逐项判断,即可得出结论.【题目详解】由且,可得,而垂直同一个平面的两条直线相互平行,故①正确;由于,,所以,则,故②正确;若与平面的交线平行,则,故不一定有,故③错误;设,在平面内作直线,,则,又,所以,,所以,从而有,故④正确.因此,真命题的个数是.故选:B【题目点拨】本题考查了空间线面位置关系的判定和证明,其中熟记空间线面位置中的平行与垂直的判定定理与性质定理是解题的关键,考查直观想象能力,属于基础题.7、A【解题分析】
由题意得所有的的排列数为,再分别讨论时的可能情况则均值可求【题目详解】由题意可知,所有的的排列数为,当时,有3种情形,即,,;当时,有种;当时,有种,那么所有27个的排列所得的的平均值为.故选:A【题目点拨】本题考查排列组合知识的应用,考查分类讨论思想,考查推理论证能力和应用意识,是中档题8、B【解题分析】
直接根据正态曲线的对称性求解即可.【题目详解】,,,即,,故选B.【题目点拨】本题主要考查正态分布与正态曲线的性质,属于中档题.正态曲线的常见性质有:(1)正态曲线关于对称,且越大图象越靠近右边,越小图象越靠近左边;(2)边越小图象越“痩长”,边越大图象越“矮胖”;(3)正态分布区间上的概率,关于对称,9、C【解题分析】
由f(x)为奇函数,根据奇函数的定义可求a,代入即可求解不等式.【题目详解】∵f(x)=2x∴f(﹣x)=﹣f(x)即2整理可得,1+∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=2∵f(x))=2x∴2x+12整理可得,2x∴1<2x<2解可得,0<x<1故选C.【题目点拨】本题主要考查了奇函数的定义的应用及分式不等式的求解,属于基础试题.10、C【解题分析】
先由二项式,确定其展开式各项的二项式系数为,进而可确定其最大值.【题目详解】因为二项式展开式的各项的二项式系数为,易知当或时,最大,即二项展开式中,二项式系数最大的为第三项和第四项.故第三项为;第四项为.故选C【题目点拨】本题主要考查二项式系数最大的项,熟记二项式定理即可,属于常考题型.11、B【解题分析】
先由题意得到的可能取值为,分别求出其对应概率,进而可求出其期望.【题目详解】由题意,的可能取值为,由题中数据可得:,,,所以.故选B【题目点拨】本题主要考查离散型随机变量的期望,熟记期望的概念,会求每个事件对应的概率即可,属于常考题型.12、B【解题分析】
由复数的乘法除法运算求出,进而得出答案【题目详解】由题可得,在复平面内表示的点为,位于第二象限,,故A,C,D错误;,,故B正确;【题目点拨】本题考查复数的基本运算与几何意义,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由题意画出图形,求出AD的长度,代入棱锥体积公式求解.【题目详解】如图,∵P为上底面△A1B1C1的中心,∴A1P,∴tan.设平面BCD交AP于F,连接DF并延长,交BC于E,可得∠DEA=∠PAA1,则tan∠DEA.∵AE,∴AD.∴三棱锥D﹣ABC的体积为V.故答案为.【题目点拨】本题考查多面体体积的求法,考查空间想象能力与思维能力,考查计算能力,是中档题.14、【解题分析】分析:直接利用复数的乘法运算,化简复数,然后求出复数的虚部.详解:由,可得,,可得,所以,的虚部是,故答案为点睛:本题主要考查乘法运算以及复数共轭复数的概念,意在考查对复数基本概念与基本运算掌握的熟练程度.15、1.【解题分析】分析:首先求得复数z,然后求解其模即可.详解:由复数的运算法则有:,则:.点睛:本题主要考查复数的运算法则,复数模的计算等知识,意在考查学生的转化能力和计算求解能力.16、【解题分析】
利用导数求出切线斜率,根据点斜式求得切线方程,将圆心坐标代入切线方程,进而可得结果.【题目详解】因为,,切线的斜率,所以切线方程为,即.因为圆的圆心为,所以,所以实数的值为-4,故答案为-4.【题目点拨】本题主要考查利用导数求曲线切线方程,属于中档题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】
(1)若取出的红球的个数不少于白球的个数,则有红、红白、红白三种情况,然后利用分类计数原理可得出答案;(2)若取出的球的总分不少于分,则有红、红白、红白和红白四种情况,然后利用分类计数原理可得出答案;(3)由题意得出箱子里红球和白球都是个,并求出操作三次的情况总数,以及恰有一次取到个红球且有一次取到个白球的情况数,然后利用古典概型的概率公式可得出答案.【题目详解】(1)若取出的红球个数不少于白球个数,则有红、红白、红白三种情况,其中红有种取法,红白有种取法,红白有种取法.因此,共有种不同的取法;(2)若取出的个球的总分不少于分,则有红、红白、红白和红白四种情况.其中红有种取法,红白有种取法,红白有种取法,红白有种不同的取法.因此,共有种不同的取法;(3)由题意知,箱子中个球中红球有个,白球也为个,从这个球中取出个球,取出个红球只有一种情况,取出个白球也只有一种情况,取出红白有种情况,总共有种情况.若取出的个球放入一箱子里,记“从箱子中任意取出个球,然后放回箱子中去”为一次操作,如果操作三次,共有种不同情况.恰有一次取到个红球且有一次取到个白球共有种情况,因此,恰有一次取到个红球并且恰有一次取到个白球的概率为.【题目点拨】本题考查分类计数原理以及概率的计算,在解题时要熟练利用分类讨论思想,遵循不重不漏的原则,考查运算求解能力,属于中等题.18、(1)..(2).【解题分析】
(1)直接利用参数方程和极坐标方程公式得到普通方程,再计算倾斜角.(2)判断点在直线l上,建立直线参数方程,代入椭圆方程,利用韦达定理得到答案.【题目详解】(1)消去参数α得,即C的普通方程为.由,得,(*)将,代入(*),化简得,所以直线l的倾斜角为.(2)由(1),知点在直线l上,可设直线l的参数方程为(t为参数),即(t为参数),代入并化简,得,,设A,B两点对应的参数分别为,,则,,所以,,所以.【题目点拨】本题考查了参数方程,极坐标方程,倾斜角,利用直线的参数方程可以简化运算.19、(1),(2)【解题分析】
(1)由已知关系式直接推得即可;(2)由依次推出,再由,,依次推出即可.【题目详解】解:(1)因,令代入得:,令,代入得:,又,令代入得:.令,代入得:.(2)由条件②可得,,…….将上述个等式相加得:.由条件③可得:,,…….将上述个等式相加得:.【题目点拨】本题主要考查了函数的递推关系式,注意观察规律,细心完成即可.20、(1)见解析;(2).【解题分析】分析:解法一:依题意可知两两垂直,以点为原点建立空间直角坐标系,(1)利用直线的方向向量和平面的法向量垂直,即可证得线面平面;(2)求出两个平面的法向量,利用两个向量的夹角公式,即可求解二面角的余弦值.解法二:利用空间几何体的点线面位置关系的判定定理和二面角的定义求解:(1)设的中点为,连接,证明四边形为平行四边形,得出线线平行,利用线面平行的判定定理即可证得线面平面;(2)以及二面角的平面角,在直角三角形中求出其平面角的余弦值,即可得到二面角的余弦值.详解:解法一:依条件可知、、两两垂直,如图,以点为原点建立空间直角坐标系.根据条件容易求出如下各点坐标:,,,,,,,.(Ⅰ)证明:∵,,是平面的一个法向量,且,所以.又∵平面,∴平面;(Ⅱ)设是平面的法向量,因为,,由,得.解得平面的一个法向量,由已知,平面的一个法向量为,,∴二面角的余弦值是.解法二:(Ⅰ)证明:设的中点为,连接,,∵,分别是,的中点,∴,又∵,,∴,∴四边形是平行四边形,∴,∵平面,平面,∴平面;(Ⅱ)如图,设的中点为,连接,∴,∵底面,∵,,∴,,∴,∴底面,在平面内,过点做,垂足为,连接,,,,∴平面,则,∴是二面角的平面角,∵,由,得,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《合作方案推介》课件
- 口腔科正畸护理
- 2024年山东省第三届中小学生海洋知识竞赛题库及答案(初中组第201-300题)
- 安全小活动总结报告
- 大学生IT专业职业规划
- 2型糖尿病胰岛素治疗
- 苏教版语文六下教学课件教学
- 《公司创业》课件
- 第三单元双基能力提升训练-六年级下册语文练测乐园(含答案)
- 《江东区国家税务局》课件
- 公共行政学网上学习行为300字
- 第四代篦冷机液压系统的故障与维护获奖科研报告
- 二次函数线段的最值课件
- 呼吸消化科科室现状调研总结与三年发展规划汇报
- 与复旦大学合作协议书
- 第五单元(知识清单)【 新教材精讲精研精思 】 七年级语文上册 (部编版)
- 缓冲托辊说明书
- 煤矿机电运输安全培训课件
- 2023年人教版新目标八年级英语下册全册教案
- 安抚(氟比洛芬酯注射液)-泌尿外科术后疼痛管理的基础药物
- 学前教育职业规划书
评论
0/150
提交评论