上海市复旦附中2024届数学高二第二学期期末调研模拟试题含解析_第1页
上海市复旦附中2024届数学高二第二学期期末调研模拟试题含解析_第2页
上海市复旦附中2024届数学高二第二学期期末调研模拟试题含解析_第3页
上海市复旦附中2024届数学高二第二学期期末调研模拟试题含解析_第4页
上海市复旦附中2024届数学高二第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市复旦附中2024届数学高二第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.平面内有两个定点和,动点满足,则动点的轨迹方程是().A. B.C. D.2.设M为曲线C:y=2x2+3x+3上的点,且曲线C在点M处切线倾斜角的取值范围为3πA.[-1,+∞) B.-∞,-34 C.-1,-3.某快递公司的四个快递点呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A.最少需要8次调整,相应的可行方案有1种B.最少需要8次调整,相应的可行方案有2种C.最少需要9次调整,相应的可行方案有1种D.最少需要9次调整,相应的可行方案有2种4.设有个不同颜色的球,放入个不同的盒子中,要求每个盒子中至少有一个球,则不同的放法有()A.种 B.种C.种 D.种5.函数f(x)=,则不等式f(x)>2的解集为()A. B.(,-2)∪(,2)C.(1,2)∪(,+∞) D.(,+∞)6.若动圆的圆心在抛物线上,且与直线相切,则动圆必过一个定点,该定点坐标为()A. B. C. D.7.用数学归纳法证明过程中,假设时,不等式成立,则需证当时,也成立,则()A. B.C. D.8.已知,(),则数列的通项公式是()A. B. C. D.9.等比数列的前n项和为,已知,则A. B. C. D.10.现有一条零件生产线,每个零件达到优等品的概率都为.某检验员从该生产线上随机抽检个零件,设其中优等品零件的个数为.若,,则()A. B. C. D.11.已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且则双曲线的方程为A. B.C. D.12.观察下列各式:3272112152……据此规律.所得的结果都是8的倍数.由此推测可得()A.其中包含等式:1032-1=10608 B.C.其中包含等式:532-1=2808 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列中,,则公比______;______.14.已知,,若向量与共线,则在方向上的投影为______.15.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.16.设直线l:x+y﹣2=0的倾斜角为α,则α的大小为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)[选修4-4:坐标系及参数方程]已知曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;(2)若曲线与曲线相交于,两点,且与轴相交于点,求的值.18.(12分)已知函数(e为自然对数的底数).(Ⅰ)当时,求函数的单调区间;(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.19.(12分)设函数,.(1)若函数f(x)在处有极值,求函数f(x)的最大值;(2)是否存在实数b,使得关于x的不等式在上恒成立?若存在,求出b的取值范围;若不存在,说明理由;20.(12分)已知a,,点在矩阵对应的变换下得到点.(1)求a,b的值;(2)求矩阵A的特征值和特征向量;(3)若向量,求.21.(12分)已知函数(,e为自然对数的底数).(1)若,求的最大值;(2)若在R上单调递减,①求a的取值范围;②当时,证明:.22.(10分)已知命题方程表示双曲线,命题点在圆的内部.若为假命题,也为假命题,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

由已知条件知,点的运动轨迹是以,为焦点的双曲线右支,从而写出轨迹的方程即可.【题目详解】解:由可知,点的运动轨迹是以,为焦点的双曲线右支,,,,.所以动点的轨迹方程是.故选:D.【题目点拨】本题考查双曲线的定义,求双曲线的标准方程,属于基础题.2、D【解题分析】

求出导函数y',倾斜角的范围可转化为斜率的范围,斜率就是导数值,由可得y'的不等式,解之可得.【题目详解】由题意y'=4x+3,切线倾斜角的范围是[3π4,π),则切线的斜率k∴-1≤4x+3<0,解得-1≤x<-3故选D.【题目点拨】本题考查导数的几何意义:函数在某一点处的导数就是其图象在该点处的切线的斜率.解题时要注意直线倾斜角与直线斜率之间的关系,特别是正切函数的性质.3、D【解题分析】

先阅读题意,再结合简单的合情推理即可得解.【题目详解】(1)A→D调5辆,D→C调1辆,B→C调3辆,共调整:5+1+3=9次,(2)A→D调4辆,A→B调1辆,B→C调4辆,共调整:4+1+4=9次,故选:D【题目点拨】本题考查了阅读能力及简单的合情推理,属中档题.4、D【解题分析】

要求每个盒子中至少有一个球,可将两个颜色的球捆绑在一起.再全排列.【题目详解】将两个颜色的球捆绑在一起,再全排列得选D【题目点拨】将两个颜色的球捆绑在一起.再全排列.本题为选择题还可取特值:令n=1,只有一种放法,排除AB,令n=2有6中放法,选D5、C【解题分析】当时,有,又因为,所以为增函数,则有,故有;当时,有,因为是增函数,所以有,解得,故有.综上.故选C6、A【解题分析】

直线为的准线,圆心在该抛物线上,且与直线相切,则圆心到准线的距离即为半径,那么根据抛物线的定义可知定点坐标为抛物线焦点.【题目详解】由题得,圆心在上,它到直线的距离为圆的半径,为的准线,由抛物线的定义可知,圆心到准线的距离等于其到抛物线焦点的距离,故动圆C必过的定点为抛物线焦点,即点,故选A.【题目点拨】本题考查抛物线的定义,属于基础题.7、C【解题分析】故选8、C【解题分析】由,得:,∴为常数列,即,故故选C9、A【解题分析】设公比为q,则,选A.10、C【解题分析】

由求出的范围,再由方差公式求出值.【题目详解】∵,∴,化简得,即,又,解得或,∴,故选C.【题目点拨】本题考查概率公式与方差公式,掌握这两个公式是解题的关键,本题属于基础题.11、A【解题分析】

分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.12、A【解题分析】

先求出数列3,7,11,15,……的通项,再判断得解.【题目详解】数列3,7,11,15,……的通项为an当n=26时,a26故选:A【题目点拨】本题主要考查归纳推理,考查等差数列的通项的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、24【解题分析】

根据等比数列通项公式构造方程求解即可.【题目详解】本题正确结果:;【题目点拨】本题考查等比数列基本量的求解,关键是熟练掌握等比数列通项公式,属于基础题.14、【解题分析】

,由向量与共线,得,解得,则在方向上的投影为,故答案为.15、.【解题分析】

先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【题目详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有种情况.若选出的2名学生恰有1名女生,有种情况,若选出的2名学生都是女生,有种情况,所以所求的概率为.【题目点拨】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.16、【解题分析】

根据直线方程可得斜率,由斜率可得倾斜角.【题目详解】由直线方程可得斜率为,所以,又,所以.故答案为:【题目点拨】本题考查了由直线方程求倾斜角,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】【试题分析】(I)将方程展开后化为直角坐标方程,利用勾股定理求得的长度并求得其最大值.(II)求出直线的参数方程,代入椭圆方程,利用直线参数的几何意义求得的值.【试题解析】(Ⅰ)由得,即曲线的直角坐标方程为根据题意得,因此曲线上的动点到原点的距离的最大值为(Ⅱ)由(Ⅰ)知直线与轴交点的坐标为,曲线的参数方程为:,曲线的直角坐标方程为联立得……8分又,所以18、(1)函数的单调递增区间是;单调递减区间是(2).【解题分析】试题分析:(1),根据题意,由于函数当t=-e时,即导数为,,函数的单调递增区间是;单调递减区间是(2)根据题意由于对于任意,不等式恒成立,则在第一问的基础上,由于函数,只要求解函数的最小值大于零即可,由于当t>0,函数子啊R递增,没有最小值,当t<0,那么可知,那么在给定的区间上可知当x=ln(-t)时取得最小值为2,那么可知t的取值范围是.考点:导数的运用点评:主要是考查了导数的运用,以及函数最值的运用,属于中档题.19、(1)函数f(x)的最大值为(2)存在,详见解析【解题分析】

(1)函数f(x)在处有极值说明(2)对求导,并判断其单调性。【题目详解】解:(1)由已知得:,且函数f(x)在处有极值∴,∴∴,∴当时,,f(x)单调递增;当时,,f(x)单调递减;∴函数f(x)的最大值为.(2)由已知得:①若,则时,∴在上为减函数,∴在上恒成立;②若,则时,∴在[0,+∞)上为增函数,∴,不能使在上恒成立;③若,则时,,当时,,∴在上为增函数,此时,∴不能使在上恒成立;综上所述,b的取值范围是.【题目点拨】本题主要考查了函数的极值,以及函数单调性的讨论,在解决此类问题时关键求导,根据导数判断单调性以及极值。属于难题。20、(1);(2)矩阵A的特征值为,3,分别对应的一个特征值为,;(3)【解题分析】

(1)直接利用矩阵的乘法运算即可;(2)利用特征多项式计算即可;(3)先计算出,再利用计算即可得到答案.【题目详解】(1)由题意知,,则,解得.(2)由(1)知,矩阵A的特征多项式,令,得到A的特征值为,.将代入方程组,解得,所以矩阵A的属于特征值的一个特征向量为.再将代入方程组,解得,所以矩阵A的属于特征值3的一个特征向量为.综上,矩阵A的特征值为,3,分别对应的一个特征值为,.(3)设,即,所以,解得,所以,所以.【题目点拨】本题考查矩阵的乘法、特征值、特征向量,考查学生的基本计算能力,是一道中档题.21、(1)1;(2)①,②证明见解析.【解题分析】

(1)求出函数的导函数,利用导函数与函数单调性的关系当,求出单调递增区间,当,求出函数的单调递减区间,进而可求出最大值.(2)①求出对恒成立,化为对恒成立,记,讨论值,求出的最小值即可证出;②由题意可得,即,两边取对数可得,下面采用分析法即可证出.【题目详解】(1)时,时,,在上单调递增时,,在上单调递减(2)由①在R上单调递减,对恒成立,即对恒成立,记,则对恒成立,当时,,符题当时,时,,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论