




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全国18名校大联考2024届数学高二第二学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知扇形的圆心角为弧度,半径为,则扇形的面积是()A. B. C. D.2.唐代诗人杜牧的七绝唐诗中的两句诗为“今来海上升高望,不到蓬莱不成仙。”其中后一句“成仙”是“到蓬莱”的()A.充分非必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件3.(2018年天津卷文)设变量x,y满足约束条件则目标函数的最大值为A.6 B.19 C.21 D.454.目前,国内很多评价机构经过反复调研论证,研制出“增值评价”方式。下面实例是某市对“增值评价”的简单应用,该市教育评价部门对本市所高中按照分层抽样的方式抽出所(其中,“重点高中”所分别记为,“普通高中”所分别记为),进行跟踪统计分析,将所高中新生进行了统的入学测试高考后,该市教育评价部门将人学测试成绩与高考成绩的各校平均总分绘制成了雷达图.点表示学校入学测试平均总分大约分,点表示学校高考平均总分大约分,则下列叙述不正确的是()A.各校人学统一测试的成绩都在分以上B.高考平均总分超过分的学校有所C.学校成绩出现负增幅现象D.“普通高中”学生成绩上升比较明显5.命题的否定是()A. B.C. D.6.已知函数,设,则A. B.C. D.7.函数的部分图象如图所示,则函数的解析式为().A. B.C. D.8.把一枚质地均匀、半径为1的圆形硬币抛掷在一个边长为8的正方形托盘上,已知硬币平放在托盘上且没有掉下去,则该硬币完全落在托盘上(即没有任何部分在托盘以外)的概率为()A. B. C. D.9.从中任取个不同的数,事件“取到的个数之和为偶数”,事件“取到两个数均为偶数”,则()A. B. C. D.10.已知直三棱柱中,底面为等腰直角三角形,,,,点在上,且,则异面直线与所成角为()A. B. C. D.11.对任意实数,若不等式在上恒成立,则的取值范围是()A. B. C. D.12.在某次试验中,实数的取值如下表:013561.35.67.4若与之间具有较好的线性相关关系,且求得线性回归方程为,则实数的值为()A.1.5 B.1.6 C.1.7 D.1.9二、填空题:本题共4小题,每小题5分,共20分。13.过坐标原点作曲线的切线,则曲线、直线与轴所围成的封闭图形的面积为______14.已知双曲线的左右焦点分别为、,点在双曲线上,点的坐标为,且到直线,的距离相等,则___15.如图是一算法的伪代码,则输出值为____________.16.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点为椭圆上一点.(1)求椭圆C的方程;(2)已知两条互相垂直的直线,经过椭圆的右焦点,与椭圆交于四点,求四边形面积的的取值范围.18.(12分)已知函数,集合.(1)当时,解不等式;(2)若,且,求实数的取值范围;(3)当时,若函数的定义域为,求函数的值域.19.(12分)已知函数的一个零点是.(1)求实数的值;(2)设,若,求的值域.20.(12分)对于集合,,,,定义.集合中的元素个数记为.规定:若集合满足,则称集合具有性质.(1)已知集合,,写出,的值;(2)已知集合,其中,证明:有性质;(3)已知集合,有性质,且求的最小值.21.(12分)央视传媒为了解央视举办的“朗读者”节目的收视时间情况,随机抽取了某市名观众进行调查,其中有名男观众和名女观众,将这名观众收视时间编成如图所示的茎叶图(单位:分钟),收视时间在分钟以上(包括分钟)的称为“朗读爱好者”,收视时间在分钟以下(不包括分钟)的称为“非朗读爱好者”.(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中随机抽取名,再从这名观众中任选名,求至少选到名“朗读爱好者”的概率;(2)若从收视时间在40分钟以上(包括40分钟)的所有观众中选出男、女观众各1名,求选出的这两名观众时间相差5分钟以上的概率.22.(10分)某企业是否支持进军新的区域市场,在全体员工中进行了抽样调查,调查结果如下表所示:支持进军新的区城市场不支持进军新的区域市场合计老员工(入职8年以上)新员工(入职不超过8年)合计(Ⅰ)根据表中数据,问是否有的把握认为“新员工和老员工是否支持进军新的区域市场有差异”;(Ⅱ)已知在被调查的新员工中有名来自市场部,其中名支持进军新的区域市场,现在从这人中随机抽取人,设其中支持进军新的区域市场人数为随机变量,求的分布列和数学期望.附:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
利用扇形面积公式(为扇形的圆心角的弧度数,为扇形的半径),可计算出扇形的面积.【题目详解】由题意可知,扇形的面积为,故选D.【题目点拨】本题考查扇形面积的计算,意在考查扇形公式的理解与应用,考查计算能力,属于基础题.2、A【解题分析】
根据命题的“真、假”,条件与结论的关系即可得出选项。【题目详解】不到蓬莱不成仙,成仙到蓬莱,“成仙”是到“到蓬莱”的充分条件,但“到蓬莱”是否“成仙”不确定,因此“成仙”是“到蓬莱”的充分非必要条件。故选:A【题目点拨】充分、必要条件有三种判断方法:1、定义法:直接判断“若则”和“若则”的真假。2、等假法:利用原命题与逆否命题的关系判断。3、若,则A是B的充分条件或B是A的必要条件;若,则A是B的充要条件。3、C【解题分析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.4、B【解题分析】
依次判断每个选项的正误,得到答案.【题目详解】A.各校人学统一测试的成绩都在分以上,根据图像知,正确B.高考平均总分超过分的学校有所,根据图像知,只有ABC三所,错误C.学校成绩出现负增幅现象,根据图像,高考成绩低于入学测试,正确D.“普通高中”学生成绩上升比较明显,根据图像,“普通高中”高考成绩都大于入学测试,正确.故答案选B【题目点拨】本题考查了雷达图的知识,意在考查学生的应用能力和解决问题的能力.5、A【解题分析】
根据命题“”是特称命题,其否定为全称命题,将“∃”改为“∀”,“≤“改为“>”即可得答案【题目详解】∵命题“”是特称命题∴命题的否定为.故选A.【题目点拨】本题主要考查全称命题与特称命题的相互转化问题.这里注意全称命题的否定为特称命题,反过来特称命题的否定是全称命题.6、D【解题分析】
对函数求导,得出函数在上单调递减,利用中间值法比较、、的大小关系,利用函数的单调性得出、、三个数的大小关系.【题目详解】,,所以,函数在上单调递减,,,即,,则,函数在上单调递减,因此,,故选D.【题目点拨】本题考查函数值的大小比较,这类问题需要结合函数的单调性以及自变量的大小,其中单调性可以利用导数来考查,本题中自变量的结构不相同,可以利用中间值法来比较,考查推理能力,属于中等题.7、D【解题分析】
根据最值计算,利用周期计算,当时取得最大值2,计算,得到函数解析式.【题目详解】由题意可知,因为:当时取得最大值2,所以:,所以:,解得:,因为:,所以:可得,可得函数的解析式:.故选D.【题目点拨】本题主要考查了正弦型函数的图象与性质,其中解答中根据函数的图象求得函数的解析式,熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题8、B【解题分析】分析:求出硬币完全落在托盘上硬币圆心所在区域的面积,求出托盘面积,由测度比是面积比得答案.详解:如图:要使硬币完全落在托盘上,则硬币圆心在托盘内以6为边长的正方形内,硬币在托盘上且没有掉下去,则硬币圆心在托盘内,由测度比为面积比可得,硬币完全落在托盘上的概率为.故选B.点睛:本题考查几何概型概率的求法,正确理解题意是关键,是基础题.9、B【解题分析】
先求得和的值,然后利用条件概率计算公式,计算出所求的概率.【题目详解】依题意,,故.故选B.【题目点拨】本小题主要考查条件概型的计算,考查运算求解能力,属于基础题.10、C【解题分析】
根据题意将直三棱柱补成长方体,由,然后再过点作直线的平行线,从而可得异面直线与所成角.【题目详解】由条件将直三棱柱补成长方体,如图.由条件,设点为的中点,连接.则,所以(或其补角)为异面直线与所成角.在中,,所以为等边三角形,所以故选:C【题目点拨】本题考查异面直线所成角,要注意补形法的应用,属于中档题.11、B【解题分析】考点:绝对值不等式;函数恒成立问题.分析:要使不等式|x+2|-|x-1|>a恒成立,需f(x)=|x+2|-|x-1|的最小值大于a,问题转化为求f(x)的最小值.解:(1)设f(x)=|x+2|-|x-1|,则有f(x)=,当x≤-2时,f(x)有最小值-1;当-2≤x≤1时,f(x)有最小值-1;当x≥1时,f(x)=1.综上f(x)有最小值-1,所以,a<-1.故答案为B.12、D【解题分析】
根据表中数据求得,代入回归直线方程即可求得结果.【题目详解】由表中数据可知:,又,解得:本题正确选项:【题目点拨】本题考查利用回归直线求解数据的问题,关键是明确回归直线恒过点,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】
设切点为,先求函数导数得切线斜率,进而得切线方程,代入点可得切线方程,进而由定积分求面积即可.【题目详解】设切点为,因为,所以,因此在点处的切线斜率为,所以切线的方程为,即;又因为切线过点,所以,解得,所以,即切点为,切线方程为,作出所围图形的简图如下:因此曲线、直线与轴所围成的封闭图形的面积为.【题目点拨】本题主要考查了导数的几何意义的应用,考查了利用微积分基本定理求解图形面积,属于中档题.14、1【解题分析】
画出图形,根据到直线,的距离相等得到为的平分线,然后根据角平分线的性质得到,再根据双曲线的定义可求得.【题目详解】由题意得,点A在双曲线的右支上,又点的坐标为,∴.画出图形如图所示,,垂足分别为,由题意得,∴为的平分线,∴,即.又,∴.故答案为1.【题目点拨】本题考查双曲线的定义和三角形角平分线的性质,解题的关键是认真分析题意,从平面几何图形的性质得到线段的比例关系,考查分析和解决问题的能力,属于中档题.15、4【解题分析】分析:按照循环体执行,直到跳出循环详解:第一次循环后:S=7,n=6;第二次循环后:S=13,n=5;第三次循环后:S=18,n=4;不成立,结束循环所以输出值为4点睛:程序题目在分析的时候一定要注意结束条件,逐次执行程序即可.16、【解题分析】
选出的男女同学均不少于1名有两种情况:1名男生2名女生和2名男生1名女生,根据组合数公式求出数量,再用古典概型计算公式求解.【题目详解】从5名男同学和2名女同学中选出3人,有种选法;选出的男女同学均不少于1名,有种选法;故选出的同学中男女生均不少于1名的概率:.【题目点拨】本题考查排列组合和古典概型.排列组合方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)由题意可得,解得进而得到椭圆的方程;(2)设出直线l1,l2的方程,直线和椭圆方程联立,运用韦达定理和弦长公式,分别求得|AB|,|MN|,再由四边形的面积公式,化简整理计算即可得到取值范围.【题目详解】(1)由题意可得,解得a2=4,b2=3,c2=1故椭圆C的方程为;(2)当直线l1的方程为x=1时,此时直线l2与x轴重合,此时|AB|=3,|MN|=4,∴四边形AMBN面积为S|AB|•|MN|=1.设过点F(1,0)作两条互相垂直的直线l1:x=ky+1,直线l2:xy+1,由x=ky+1和椭圆1,可得(3k2+4)y2+1ky﹣9=0,判别式显然大于0,y1+y2,y1y2,则|AB|••,把上式中的k换为,可得|MN|则有四边形AMBN面积为S|AB|•|MN|••,令1+k2=t,则3+4k2=4t﹣1,3k2+4=3t+1,则S,∴t>1,∴01,∴y=﹣()2,在(0,)上单调递增,在(,1)上单调递减,∴y∈(12,],∴S∈[,1)故四边形PMQN面积的取值范围是【题目点拨】本题考查直线和椭圆的位置关系,同时考查直线椭圆截得弦长的问题,以及韦达定理是解题的关键,属于难题.18、(1);(2);(3)当时,的值域为;当时,的值域为;当时,的值域为.【解题分析】分析:(1)先根据一元二次方程解得ex>3,再解对数不等式得解集,(2)解一元二次不等式得集合A,再根据,得log2f(x)≥1在0≤x≤1上有解,利用变量分离法得a≥3ex-e2x在0≤x≤1上有解,即a≥[3ex-e2x]min.最后根据二次函数性质求最值得结果,(3)先转化为对勾函数,再根据拐点与定义区间位置关系,分类讨论,结合单调性确定函数值域.详解:(1)当a=-3时,由f(x)>1得ex-3e-x-1>1,所以e2x-2ex-3>0,即(ex-3)(ex+1)>0,所以ex>3,故x>ln3,所以不等式的解集为(ln3,+∞).(2)由x2-x≤0,得0≤x≤1,所以A={x|0≤x≤1}.因为A∩B≠,所以log2f(x)≥1在0≤x≤1上有解,即f(x)≥2在0≤x≤1上有解,即ex+ae-x-3≥0在0≤x≤1上有解,所以a≥3ex-e2x在0≤x≤1上有解,即a≥[3ex-e2x]min.由0≤x≤1得1≤ex≤e,所以3ex-e2x=-(ex-)2+∈[3e-e2,],所以a≥3e-e2.(3)设t=ex,由(2)知1≤t≤e,记g(t)=t+-1(1≤t≤e,a>1),则,t(1,)(,+∞)g′(t)-0+g(t)↘极小值↗①当≥e时,即a≥e2时,g(t)在1≤t≤e上递减,所以g(e)≤g(t)≤g(1),即.所以f(x)的值域为.②当1<<e时,即1<a<e2时,g(t)min=g()=2-1,g(t)max=max{g(1),g(e)}=max{a,}.1°若a,即e<a<e2时,g(t)max=g(1)=a;所以f(x)的值域为;2°若a,即1<a≤e时,g(t)max=g(e)=,所以f(x)的值域为.综上所述,当1<a≤e时,f(x)的值域为;当e<a<e2时,f(x)的值域为;当a≥e2时,f(x)的值域为.点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.19、(1)a=1;(2).【解题分析】
分析:(1)令即可求得结果;(2)将原解析式代入,结合二倍角公式、辅助角公式等求得,将x的范围带入解析式,结合三角函数图像的性质即可求出值域.【题目详解】:(Ⅰ)依题意,得,即,解得.(Ⅱ)解:由(Ⅰ)得..由得当即时,取得最大值2,当即时,取得最小值-1.所以的值域是【题目点拨】本题主要考查了三角函数的图象与性质的应用问题,此类题目是三角函数问题中的典型题目,可谓相当经典解答本题,关键在于能利用三角函数的公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.20、(1)(2)证明过程见解析;(3).【解题分析】
(1)利用定义,通过计算可以求出,的值;(2)可以知道集合中的元素组成首项为,公比为的等比数列,只要证明这个等比数列中的任意两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学面试题问题及答案
- 月子护理场所管理制度
- 2025年 呼和浩特市机械工程职业技术学校招聘考试笔试试卷附答案
- 2025年 德州交通职业中等专业学校招聘考试笔试试卷附答案
- 新发布的安全培训课件
- 《数控车床加工技术(第2版)》中职全套教学课件
- 志愿者赋能培训
- 收费站恶劣天气应急处置培训
- 书法培训计划方案
- 肢体活动度训练体系构建
- 2025年新疆维吾尔自治区中考历史真题(解析版)
- 荆州中学2024-2025学年高二下学期6月月考历史试卷
- 2025-2030年中国婚庆产业行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2025学年苏教版四年级下学期期末测试数学试卷(含答案)
- 2025年中考化学必考要点知识归纳
- 三年级语文下册全册重点知识点归纳
- 公路养护材料管理制度
- JG/T 330-2011建筑工程用索
- 单位消防培训课件教学
- 项目可行性研究报告风险管理与应急措施制定策略
- 生产经营单位事故隐患内部报告奖励制度
评论
0/150
提交评论