2024届广西百色民族高级中学数学高二第二学期期末学业水平测试模拟试题含解析_第1页
2024届广西百色民族高级中学数学高二第二学期期末学业水平测试模拟试题含解析_第2页
2024届广西百色民族高级中学数学高二第二学期期末学业水平测试模拟试题含解析_第3页
2024届广西百色民族高级中学数学高二第二学期期末学业水平测试模拟试题含解析_第4页
2024届广西百色民族高级中学数学高二第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西百色民族高级中学数学高二第二学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足,则的值是()A. B. C. D.2.近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.某品牌公司一直默默拓展海外市场,在海外设了多个分支机构,现需要国内公司外派大量中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从中青年员工中随机调查了位,得到数据如下表:愿意被外派不愿意被外派合计中年员工青年员工合计由并参照附表,得到的正确结论是附表:0.100.010.0012.7066.63510.828A.在犯错误的概率不超过10%的前提下,认为“是否愿意外派与年龄有关”;B.在犯错误的概率不超过10%的前提下,认为“是否愿意外派与年龄无关”;C.有99%以上的把握认为“是否愿意外派与年龄有关”;D.有99%以上的把握认为“是否愿意外派与年龄无关”.3.在极坐标系中,直线被圆截得的弦长为()A. B.2 C. D.4.函数()的图象的大致形状是()A. B. C. D.5.若平面四边形ABCD满足,则该四边形一定是()A.正方形 B.矩形 C.菱形 D.直角梯形6.已知单位向量的夹角为,若,则为()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形7.下列函数中,与函数的奇偶性相同,且在上单调性也相同的是()A. B. C. D.8.函数图象的大致形状是()A. B. C. D.9.下列命题错误的是()A.命题“若,则”的逆否命题为“若,则”B.若为假命题,则均为假命题C.对于命题:,使得,则:,均有D.“”是“”的充分不必要条件10.若函数,设,,,则,,的大小关系A. B.C. D.11.已知m>0,n>0,向量则的最小值是(

)A. B.2 C. D.12.已知曲线在点处切线的倾斜角为,则等于()A.2B.-2C.3D.-1二、填空题:本题共4小题,每小题5分,共20分。13.把一个大金属球表面涂漆,共需公斤油漆,若把这个大金属球融化成个大小都相同的小金属球,不计损耗,把这些小金属球表面都涂漆,需要这种油漆_______公斤.14.为了了解学校(共三个年级)的数学学习情况,教导处计算高一、高二、高三三个年级的平均成绩分别为,并进行数据分析,其中三个年级数学平均成绩的标准差为____________.15.已知地球的半径约为6371千米,上海的位置约为东经、北纬,开罗的位置约为东经、北纬,两个城市之间的距离为______.(结果精确到1千米)16.一个口袋里装有5个不同的红球,7个不同的黑球,若取出一个红球记2分,取出一个黑球记1分,现从口袋中取出6个球,使总分低于8分的取法种数为__________种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某手机代工厂对生产线进行升级改造评估,随机抽取了生产线改造前、后100个生产班次的产量进行对比,改造前、后手机产量(单位:百部)的频率分布直方图如下:(1)设改造前、后手机产量相互独立,记表示事件:“改造前手机产量低于5000部,改造后手机产量不低于5000部”,视频率为概率,求事件的概率;(2)填写下面列联表,并根据列联表判断是否有的把握认为手机产量与生产线升级改造有关:手机产量部手机产量部改造前改造后(3)根据手机产量的频率分布直方图,求改造后手机产量的中位数的估计值(精确到0.01).参考公式:随机变量的观测值计算公式:,其中.临界值表:0.1000.0500.0100.0012.7063.8416.63510.82818.(12分)已知.(Ⅰ)计算的值;(Ⅱ)若,求中含项的系数;(Ⅲ)证明:.19.(12分)如图,四棱锥中,,,,,,.(1)求证:;(2)求钝二面角的余弦值.20.(12分)已知函数,,若在处与直线相切.(1)求的值;(2)求在上的极值.21.(12分)在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)求曲线上的直线距离最大的点的直角坐标.22.(10分)已知函数有两个零点,.(Ⅰ)求的取值范围;(Ⅱ)证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

先用复数除法进行化简,之后求共轭复数即可.【题目详解】因为故:故其共轭复数为:故选:C.【题目点拨】本题考查复数的除法运算,涉及共轭复数,属基础题.2、A【解题分析】

由公式计算出的值,与临界值进行比较,即可得到答案。【题目详解】由题可得:故在犯错误的概率不超过10%的前提下,认为“是否愿意外派与年龄有关”,有90%以上的把握认为“是否愿意外派与年龄有关,所以答案选A;故答案选A【题目点拨】本题主要考查独立性检验,解题的关键是正确计算出的值,属于基础题。3、C【解题分析】试题分析:将极坐标化为直角坐标可得和,圆心到直线的距离,故,所以应选C.考点:极坐标方程与直角坐标之间的互化.【易错点晴】极坐标和参数方程是高中数学选修内容中的核心内容,也是高考必考的重要考点.解答这类问题时,一定要扎实掌握极坐标与之交坐标之间的关系,并学会运用这一关系进行等价转换.本题在解答时充分利用题设条件,运用将极坐标方程转化为直角坐标方程,最后通过直角坐标中的运算公式求出弦长,从而使问题巧妙获解.4、C【解题分析】

对x分类讨论,去掉绝对值,即可作出图象.【题目详解】故选C.【题目点拨】识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.5、C【解题分析】试题分析:因为,所以四边形ABCD为平行四边形,又因为,所以BD垂直AC,所以四边形ABCD为菱形.考点:向量在证明菱形当中的应用.点评:在利用向量进行证明时,要注意向量平行与直线平行的区别,向量平行两条直线可能共线也可能平行.6、C【解题分析】,,与夹角为,且,为直角三角形,故选C.7、A【解题分析】

先分析的奇偶性以及在的单调性,然后再对每个选项进行分析.【题目详解】函数为偶函数,且在上为增函数,对于选项,函数为偶函数,在上为増函数,符合要求;对于选项,函数是偶函数,在上为减函数,不符合题意;对于选项,函数为奇函数,不符合题意;对于选项,函数为非奇非偶函数,不符合要求;只有选项符合要求,故选.【题目点拨】奇偶函数的判断:(满足定义域关于原点对称的情况下)若,则是奇函数;若,则是偶函数.8、B【解题分析】

利用奇偶性可排除A、C;再由的正负可排除D.【题目详解】,,故为奇函数,排除选项A、C;又,排除D,选B.故选:B.【题目点拨】本题考查根据解析式选择图象问题,在做这类题时,一般要结合函数的奇偶性、单调性、对称性以及特殊点函数值来判断,是一道基础题.9、B【解题分析】

由原命题与逆否命题的关系即可判断A;由复合命题的真值表即可判断B;由特称命题的否定是全称命题即可判断C;根据充分必要条件的定义即可判断D;.【题目详解】A.命题:“若p则q”的逆否命题为:“若¬q则¬p”,故A正确;B.若p∧q为假命题,则p,q中至少有一个为假命题,故B错.C.由含有一个量词的命题的否定形式得,命题p:∃x∈R,使得x2+x+1<0,则¬p为:∀x∈R,均有x2+x+1≥0,故C正确;D.由x2﹣3x+2>0解得,x>2或x<1,故x>2可推出x2﹣3x+2>0,但x2﹣3x+2>0推不出x>2,故“x>2”是“x2﹣3x+2>0”的充分不必要条件,即D正确故选:B.【题目点拨】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题.10、D【解题分析】

根据题意,结合二次函数的性质可得在上为增函数,结合对数的运算性质可得,进而可得,结合函数的单调性分析可得答案.【题目详解】根据题意,函数,是二次函数,其对称轴为y轴,且在上为增函数,,,,则有,则;故选:D.【题目点拨】本题考查函数的奇偶性以及单调性的判定以及应用,涉及对数的运算,属于基础题.11、C【解题分析】分析:利用向量的数量积为0,求出m,n的方程,然后利用基本不等式求解表达式的最小值即可.详解:m>0,n>0,向量,可得,则,当且仅当时,表达式取得最小值.故选:C.点睛:条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.12、A【解题分析】因为,所以,由已知得,解得,故选A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据大金属球和64个小金属球体积相同,求半径的比值,再求大金属球和64个小金属球的表面积比值,最后求油漆数量.【题目详解】,,,.故答案为:【题目点拨】本题考查球的体积和表面积的实际应用问题,重点考查表面积和体积公式,关键是利用前后体积相等求半径的比值,属于基础题型.14、【解题分析】

根据方差公式计算方差,然后再得标准差.【题目详解】三个数的平均值为115,方差为,∴标准差为.故答案为:.【题目点拨】本题考查标准差,注意到方差是标准差的平方,因此可先计算方差.方差公式为:数据的方差为.15、千米【解题分析】

设上海为点,开罗为点.求两个城市之间的距离,即求两城市在地球上的球面距离.由题意可知上海和开罗都在北纬的位置,即在同一纬度的圆上,计算出此圆的半径,即可求.在三角形由余弦定理可求得,结合扇形弧长公式,即可求得两个城市之间的距离.【题目详解】设上海为点,开罗为点,地球半径为根据纬度定义,设北纬所在圆的半径为,可得:上海的位置约为东经,开罗的位置约为东经,故在北纬所在圆上的圆心角为:.在中得中,根据余弦定理可得:根据扇形弧长公式可得:劣弧故答案为:千米.【题目点拨】本题由经度,纬度求球面上两点距离,根据题意画出空间图形,理解经度和纬度的定义是解本题关键,考查空间想象能力,属于基础题.16、【解题分析】根据题意,设取出个红球,则取出个黑球,此时总得分为,若总分低于8分,则有,即,即可取的情况有2种,即或,即总分低于8分的情况有2种:①、取出6个黑球,有种取法,②、取出1个红球,5个黑球,有种取法,故使总分低于8分的取法有7+105=112种;故答案为:112.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)有的把握认为手机产量与生产线升级改造有关,详见解析(3)(百部)【解题分析】

(1)计算出事件“改造前手机产量低于部”的频率,以及事件“改造后手机产量不低于部”的频率,再利用独立事件的概率公式可计算出事件的概率;(2)补充列联表,计算的观测值,再根据临界值表找出犯错误的概率,即可对问题下结论;(3)利用频率分布直方图左右两边面积均为计算出中位数的值。【题目详解】(1)记表示事件“改造前手机产量低于5000部”,表示事件“改造后手机产量不低于5000部”,由题意知.改造前手机产量低于5000部的频率,故的估计值为0.1.改造后手机产量不低于5000部的频率为,故的估计值为0.66,因此,事件的概率估计值为.(2)根据手机产量的频率分布直方图得列联表:手机产量部手机产量部改造前138改造后3466由于,故有的把握认为手机产量与生产线升级改造有关;(3)因为改造后手机产量的频率分布直方图中,手机产量低于5000部的直方图面积为,手机产量低于5500部的直方图面积为,故改造后手机产量的中位数的估计值为(百部).【题目点拨】本题考查独立事件概率的计算、独立性检验以及频率分布直方图中位数的计算,意在考查学生对这些知识的理解和掌握水平和分析推理能力,属于中等题。18、(Ⅰ)-2019;(Ⅱ)196;(Ⅲ)详见解析.【解题分析】

(Ⅰ)由于,代入-1即可求得答案;(Ⅱ)由于,利用二项式定理即可得到项的系数;(Ⅲ)可设,找出含项的系数,利用错位相减法数学思想两边同时乘以,再找出含项的系数,于是整理化简即可得证.【题目详解】解:(Ⅰ)∵,∴;∴;(Ⅱ),中项的系数为;(Ⅲ)设(且)①则函数中含项的系数为,另一方面:由①得:②①-②得:,所以,所以,则中含项的系数为,又因为,,所以,即,所以.【题目点拨】本题主要考查二项式定理的相关应用,意在考查学生对于赋值法的理解,计算能力,分析能力及逻辑推理能力,难度较大.19、(1)见解析;(2)【解题分析】

(1)推导出,,从而平面,由此能证明.(2)过点在平面内作直线,由(1)以点为坐标原点建立空间直角坐标系,利用向量法求出钝二面角的余弦值.【题目详解】(1)证明:在中,,且,由余弦定理,得.过点作,可知四边形是矩形,,且.又,故,于是有,即.又,且,平面,.(2)过点在平面内作直线,由(1)可知,和直线两两垂直,如图,以点为坐标原点建立空间直角坐标系.由题意,可得,,,,.设平面的法向量为,由得令,得,,即.再取平面的一个法向量.设二面角的大小为,则,即二面角的余弦值为.【题目点拨】本题考查了线面垂直的判定定理、定义,空间向量法求面面角,解题的关键是建立恰当的空间直角坐标系,属于基础题.20、(1)(2)极大值为,无极小值.【解题分析】

(1)求出导函数,利用切线意义可列得方程组,于是可得答案;(2)利用导函数判断在上的单调性,于是可求得极值.【题目详解】解:(1)∵函数在处与直线相切,∴,即,解得;(2)由(1)得:,定义域为.,令,解得,令,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论