




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市聚奎中学2024届数学高二第二学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是虚数单位,则()A. B. C. D.2.设圆x2+y2+2x-2=0截x轴和y轴所得的弦分别为AB和CDA.22 B.23 C.23.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种4.设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<a C.a<b<c D.b<a<c5.在20张百元纸币中混有4张假币,从中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率是()A. B. C. D.以上都不正确6.在的展开式中,系数最大的项是()A.第3项 B.第4项 C.第5项 D.第6项7.曲线的参数方程为,则曲线是()A.线段 B.双曲线的一支 C.圆弧 D.射线8.一个几何体的三视图如图所示,若主视图是上底为2,下底为4,高为1的等腰梯形,左视图是底边为2的等腰三角形,则该几何体的体积为()A. B. C.2 D.49.在数学归纳法的递推性证明中,由假设时成立推导时成立时,增加的项数是()A. B. C. D.10.已知的展开式中含的项的系数为,则()A. B. C. D.11.如图,在中,.是的外心,于,于,于,则等于()A. B.C. D.12.已知某函数图象如图所示,则图象所对应的函数可能是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的焦点在轴上,焦距为,且过点,则双曲线的标准方程为______.14.若的展开式的各项系数之和为96,则该展开式中的系数为______.(用数字填写答案)15.若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的_________倍;16.在区间上随机取一个数,使得成立的概率为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了名女性或名男性,根据调研结果得到如图所示的等高条形图.(1)完成下列列联表:喜欢旅游不喜欢旅游估计女性男性合计(2)能否在犯错误概率不超过的前提下认为“喜欢旅游与性别有关”.附:参考公式:,其中18.(12分)2018年6月14日,世界杯足球赛在俄罗斯拉开帷幕,世界杯给俄罗斯经济带来了一定的增长,某纪念商品店的销售人员为了统计世界杯足球赛期间商品的销售情况,随机抽查了该商品商店某天200名顾客的消费金额情况,得到如图频率分布表:将消费顾客超过4万卢布的顾客定义为”足球迷”,消费金额不超过4万卢布的顾客定义为“非足球迷”.消费金额/万卢布合计顾客人数93136446218200(1)求这200名顾客消费金额的中位数与平均数(同一组中的消费金额用该组的中点值作代表;(2)该纪念品商店的销售人员为了进一步了解这200名顾客喜欢纪念品的类型,采用分层抽样的方法从“非足球迷”,“足球迷”中选取5人,再从这5人中随机选取3人进行问卷调查,则选取的3人中“非足球迷”人数的分布列和数学期望.19.(12分)已知函数,.(Ⅰ)求函数的单调减区间;(Ⅱ)证明:;(Ⅲ)当时,恒成立,求实数的值.20.(12分)已知函数,数列的前项和为,点()均在函数的图像上.(1)求数列的通项公式;(2)设,是数列的前项和,求使得对所有都成立的最小正整数.21.(12分))已知.(I)试猜想与的大小关系;(II)证明(I)中你的结论.22.(10分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程:(2)求与交点的极坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据复数的乘法运算法则,直接计算,即可得出结果.【题目详解】.故选B【题目点拨】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.2、C【解题分析】
先求出|AB|,|CD|,再求四边形ABCD的面积.【题目详解】x2+y令y=0得x=±3-1,则令x=0得y=±2,所以|CD|=2四边形ACBD的面积S=故答案为:C【题目点拨】本题主要考查直线和圆的位置关系,考查弦长的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.3、C【解题分析】
根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【题目详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【题目点拨】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.4、D【解题分析】
∵a=log54<log55=1,b=(log53)2<(log55)2=1,c=log45>log44=1,所以c最大单调增,所以又因为所以b<a所以b<a<c.故选D.5、A【解题分析】设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,则所求的概率即P(A|B).又,由公式.本题选择A选项.点睛:条件概率的求解方法:(1)利用定义,求P(A)和P(AB),则.(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),得.6、C【解题分析】
先判断二项式系数最大的项,再根据正负号区别得到答案.【题目详解】的展开式中共有8项.由二项式系数特点可知第4项和第5项的二项式系数最大,但第4项的系数为负值,所以的展开式中系数最大的项为第5项.故选C.【题目点拨】本题考查了展开式系数的最大值,先判断二项式系数的最大值是解题的关键.7、A【解题分析】由代入消去参数t得又所以表示线段。故选A8、A【解题分析】
由三视图可知,该几何体是一个三棱柱截掉两个三棱锥,利用所给数据,求出三棱柱与三棱锥的体积,从而可得结果.【题目详解】由三视图可知,该几何体是一个三棱柱截掉两个三棱锥,画出几何体的直观图,如图,把几何体补形为一个直三棱柱,由三视图的性质可知三棱柱的底面面积,高,所以,,所以,几何体的体积为.故选A.【题目点拨】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.9、C【解题分析】分析:分别计算当时,,当成立时,,观察计算即可得到答案详解:假设时成立,即当成立时,增加的项数是故选点睛:本题主要考查的是数学归纳法。考查了当和成立时左边项数的变化情况,考查了理解与应用的能力,属于中档题。10、D【解题分析】
根据所给的二项式,利用二项展开式的通项公式写出第项,整理成最简形式,令的指数为,求得,再代入系数求出结果.【题目详解】二项展开式通项为,令,得,由题意得,解得.故选:D.【题目点拨】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.11、D【解题分析】由正弦定理有,为三角形外接圆半径,所以,在中,,同理,所以,选D.12、D【解题分析】
对给出的四个选项分别进行分析、讨论后可得结果.【题目详解】对于A,函数,当时,;当时,,所以不满足题意.对于B,当时,单调递增,不满足题意.对于C,当时,,不满足题意.对于D,函数为偶函数,且当时,函数有两个零点,满足题意.故选D.【题目点拨】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设双曲线的标准方程为,利用双曲线的定义求出的值,结合焦距求出的值,从而可得出双曲线的标准方程.【题目详解】设双曲线的标准方程为,由题意知,该双曲线的左、右焦点分别为、,由双曲线的定义可得,,则,因此,双曲线的标准方程为.故答案为:.【题目点拨】本题考查过点求双曲线的方程,在双曲线的焦点已知的前提下,可以利用定义来求双曲线的标准方程,也可以利用待定系数法求解,考查运算求解能力,属于中等题.14、11【解题分析】
先利用赋值法求得,再结合二项式展开式通项公式求解即可.【题目详解】解:令,得,则,故该展开式中的项的系数为,故答案为:11.【题目点拨】本题考查了二项式展开式系数之和,重点考查了展开式的项系数,属基础题.15、1;【解题分析】
分别计算侧面积和底面积后再比较.【题目详解】由题意,,,∴.故答案为1.【题目点拨】本题考查圆锥的侧面积,掌握侧面积计算公式是解题关键.属于基础题.16、【解题分析】
利用零点分段法解不等式,得出解集与区间取交集,再利用几何概型的概率公式计算出所求事件的概率.【题目详解】当时,,解得,此时;当时,成立,此时;当时,,解得,此时.所以,不等式的解集为,因此,由几何概型的概率公式可知,所求事件的概率为,故答案为.s【题目点拨】本题考查绝对值不等式的解法、几何概型概率公式的计算,解题的关键就是解出绝对值不等式,解绝对值不等式一般有零点分段法(分类讨论法)以及几何法两种方法求解,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2)不能在犯错误概率不超过的前提下认为“喜欢旅游与性别有关”.【解题分析】分析:(1)根据等高条形图计算可得女生不喜欢打羽毛球的人数为,男性不喜欢打羽毛球的人数为.据此完成列联表即可.(2)结合(1)中的列联表计算可得,则不能在犯错误的概率不超过的前提下认为喜欢打羽毛球与性别有关.详解:(1)根据等高条形图,女生不喜欢打羽毛球的人数为,男性不喜欢打羽毛球的人数为.填写列联表如下:喜欢打羽毛球不喜欢打羽毛球总计女生男生总计(2)根据列联表中数据,计算,所以不能在犯错误的概率不超过的前提下认为喜欢打羽毛球与性别有关.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.18、(1)见解析;(2)见解析.【解题分析】
(1)在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值.平均数的估计值等于频率直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和,这样就可以求出这200名顾客消费金额的中位数与平均数.(2)通过频率分布表可以求“足球迷”与“非足球迷”的人数比,这样可以求出从“足球迷”“非足球迷”中选取5人,其中“足球迷”的人数及“非足球迷”的人数,这样可以求出选取的3人中非足球迷的人数,取值是多少,求出它们相对应的概率,最后列出分布列,算出数学期望.【题目详解】(1)设这200名顾客消费金额的中位数为t,则有,解得所以这200名顾客消费金额的中位数为,这200名顾客消费金额的平均数,所以这200名顾客的消费金额的平均数为3.367万卢布.(2)由频率分布表可知,“足球迷”与“非足球迷”的人数比为,采用分层抽样的方法,从“足球迷”“非足球迷”中选取5人,其中“足球迷”有人,“非足球迷”有人.设为选取的3人中非足球迷的人数,取值为1,2,3.则.分布列为:1230.30.60.1.【题目点拨】本题考查了利用频率分布表求中位数、平均数.考查了求离散型随机变量分布列及数学期望的方法.19、(1)f(x)的单调递减区间是.(2)证明见解析.(3).【解题分析】
(Ⅰ)求导,由,即可得到函数的单调减区间;(Ⅱ)记h(x)=f(x)g(x),设法证明,即可证明.(Ⅲ)由题即,易证,当时取到等号,由得,由此可求的值.【题目详解】(Ⅰ)因为由,得所以f(x)的单调递减区间是.(Ⅱ)记h(x)=f(x)g(x)=,,所以在R上为减函数因为所以存在唯一,使即,,当时,;当时,.所以所以.(Ⅲ)因为,所以,易证,当时取到等号,由得,,所以即.【题目点拨】本题主要考查导数在函数中的应用,以及不等式的证明与恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.20、(1);(2)1.【解题分析】分析:(1)由已知条件推导出,由此能求出;(2)由,利用裂项求和法求出,由此能求出满足要求的最小整数.详解:(1)当时,当时,符合上式综上,(2)所以由对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废物处理与回收合同书
- 农村土地承包合同管理与风险防控
- 教师劳动合同
- 标准域名转让合同书范本
- 挖机租赁业务合同
- 小额借款合同示例
- 粮食储备库租赁合同标准文本
- 家庭护理保姆服务合同细则
- 木材加工企业的设备更新与技术改造考核试卷
- 木制品三维建模与虚拟现实考核试卷
- 统编版高中语文选择性必修下册教学计划
- 跨文化沟通技巧课件
- 三位数乘一位数练习题(300道)
- 北师大版八年级下册数学全册教案完整版教学设计
- 长白县巡游出租汽车驾驶员从业资格-区域科目考试题库(含答案)
- VB开发OPC客户端程序的步骤与实现
- 2022人教版高二英语新教材选择性必修全四册课文原文及翻译(英汉对照)
- 死因监测(20141.3)课件
- 新闻采访与写作-马工程-第三章
- 肢体、视力、听力、精神、智力、筛查表定稿陕西省残疾人家庭医生签约服务档案
- 房、土两税困难减免申请报告(参考模板)(适用于房、土两税困难减免一般情形)
评论
0/150
提交评论