版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市溧水区第二高级中学、第三高级中学等三校联考2024届数学高二下期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知f(x)=2x2-xA.0,12 B.12,12.将正整数1,2,3,4,…按如图所示的方式排成三角形数组,则第20行从右往左数第1个数是()A.397 B.398 C.399 D.4003.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“⊥”是“⊥”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知函数,,若关于的方程有6个不相等的实数解,则实数的取值范围是()A. B. C. D.5.若实数a,b满足a+b=2,则的最小值是()A.18 B.6 C.2 D.46.已知直线(t为参数)与圆相交于B、C两点,则的值为()A. B. C. D.7.已知抛物线,过其焦点且斜率为1的直线交抛物线于两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为A. B.C. D.8.某个几何体的三视图如图所示(其中正视图中的圆弧是半径为2的半圆),则该几何体的体积为()A. B.C. D.9.若,均为单位向量,且,则与的夹角大小为()A. B. C. D.10.正六边形的边长为,以顶点为起点,其他顶点为终点的向量分别为;以顶点为起点,其他顶点为终点的向量分别为.若分别为的最小值、最大值,其中,则下列对的描述正确的是()A. B. C. D.11.某食堂一窗口供应2荤3素共5种菜,甲、乙两人每人在该窗口打2种菜,且每人至多打1种荤菜,则两人打菜方法的种数为()A.64 B.81 C.36 D.10012.已知函数,若有最小值,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的单调减区间是______.14.若双曲线的一个焦点是,则该双曲线的渐近线方程是______15.底面是直角三角形的直棱柱的三视图如图,网格中的每个小正方形的边长为1,则该棱柱的表面积是________16.抛物线的准线方程是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列的前项和为,且,.(1)求数列的通项公式;(2)若,,求数列的前项和.18.(12分)在直角坐标系中,直线经过点,其倾斜角为,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系,设曲线C的极坐标方程为.(1)若直线与曲线C有公共点,求的取值范围:(2)设为曲线C上任意一点,求的取值范围.19.(12分)从1、2、3、4、5五个数字中任意取出无重复的3个数字.(I)可以组成多少个三位数?(II)可以组成多少个比300大的偶数?(III)从所组成的三位数中任取一个,求该数字是大于300的奇数的概率.20.(12分)2019年6月湖北潜江将举办第六届“中国湖北(潜江)龙虾节”,为了解不同年龄的人对“中国湖北(潜江)龙虾节”的关注程度,某机构随机抽取了年龄在20—70岁之间的100人进行调查,经统计“年轻人”与“中老年人”的人数之比为。关注不关注合计年轻人30中老年人合计5050100(1)根据已知条件完成上面的列联表,并判断能否有99﹪的把握认为关注“中国湖北(潜江)龙虾节”是否和年龄有关?(2)现已经用分层抽样的办法从中老年人中选取了6人进行问卷调查,若再从这6人中选取3人进行面对面询问,记选取的3人中关注“中国湖北(潜江)龙虾节”的人数为随机变量,求的分布列及数学期望。附:参考公式其中。临界值表:0.050.0100.0013.8416.63510.82821.(12分)已知函数,函数,记集合.(I)求集合;(II)当时,求函数的值域.22.(10分)如图所示的几何,底为菱形,,.平面底面,,,.(1)证明:平面平面;(2)求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
求出函数y=fx的定义域,并对该函数求导,解不等式f'x【题目详解】函数y=fx的定义域为0,+∞f'令f'x<0,得12<x<1,因此,函数y=f【题目点拨】本题考查利用导数求函数的单调区间,除了解导数不等式之外,还要注意将解集与定义域取交集,考查计算能力,属于中等题。2、D【解题分析】
根据图中数字排列规律可知,第行共有项,且最后一项为,从而可推出第20行最后1个数的值,即可求解出答案.【题目详解】由三角形数组可推断出,第行共有项,且最后一项为,所以第20行,最后一项为1.故答案选D.【题目点拨】本题主要考查归纳推理的能力,归纳推理是由特殊到一般,由具体到抽象的一种推理形式,解题时,要多观察实验,对有限的资料进行归纳整理,提出带有规律性的猜想.3、B【解题分析】当α⊥β时,平面α内的直线m不一定和平面β垂直,但当直线m垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m⊥β”的必要不充分条件.4、A【解题分析】令g(x)=t,则方程f(t)=λ的解有3个,由图象可得,0<λ<1.且三个解分别为,则,,均有两个不相等的实根,则△1>0,且△2>0,且△3>0,即16−4(2+5λ)>0且16−4(2+3λ)>0,解得,当0<λ<时,△3=16−4(1+4λ−)>0即3−4λ+>0恒成立,故λ的取值范围为(0,).故选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识.5、B【解题分析】
由重要不等式可得,再根据a+b=2,代入即可得解.【题目详解】解:由实数a,b满足a+b=2,有,当且仅当,即时取等号,故选:B.【题目点拨】本题考查了重要不等式的应用及取等的条件,重点考查了运算能力,属基础题.6、B【解题分析】
根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论.【题目详解】曲线(为参数),化为普通方程,将代入,可得,∴,故选B.【题目点拨】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.7、B【解题分析】∵y2=2px的焦点坐标为,∴过焦点且斜率为1的直线方程为y=x-,即x=y+,将其代入y2=2px得y2=2py+p2,即y2-2py-p2=0.设A(x1,y1),B(x2,y2),则y1+y2=2p,∴=p=2,∴抛物线的方程为y2=4x,其准线方程为x=-1.故选B.8、A【解题分析】
试题分析:由三视图可知该几何体的体积等于长方体体积和半个圆柱体积之和,.考点:三视图与体积.9、C【解题分析】分析:由向量垂直得向量的数量积为0,从而求得,再由数量积的定义可求得夹角.详解:∵,∴,∴,∴,∴.故选C.点睛:平面向量数量积的定义:,由此有,根据定义有性质:.10、A【解题分析】
利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而得到结论.【题目详解】由题意,以顶点A为起点,其他顶点为终点的向量分别为,以顶点D为起点,其他顶点为终点的向量分别为,则利用向量的数量积公式,可知只有,其余数量积均小于等于0,又因为分别为的最小值、最大值,所以,故选A.【题目点拨】本题主要考查了向量的数量积运算,其中解答中熟记向量的数量积的运算公式,分析出向量数量积的正负是关键,着重考查了分析解决问题的能力,属于中档试题.11、B【解题分析】
由题甲,乙均有两种情况,一荤一素和两素,再由分步原理可得种数。【题目详解】甲有两种情况:一荤一素,种;两素,种.故甲共有种,同理乙也有9种,则两人打菜方法的种数为种.故选B.【题目点拨】本题考查分类加法和分步乘法计数原理,属于基础题。12、C【解题分析】
求出原函数的导函数,函数有最小值,则导函数在小于0有解,于是转化为斜率问题求解得到答案.【题目详解】根据题意,得,若有最小值,即在上先递减再递增,即在先小于0,再大于0,令,得:,令,只需的斜率大于过的的切线的斜率即可,设切点为,则切线方程为:,将代入切线方程得:,故切点为,切线的斜率为1,只需即可,解得:,故答案为C.【题目点拨】本题主要考查函数的最值问题,导函数的几何意义,意在考查学生的转化能力,分析能力及计算能力,难度较大.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:先求出函数的定义域,函数的导函数,令导函数小于0求出的范围,写成区间形式,可得到函数的单调减区间.详解:函数的定义域为,,令,得函数的单调递减区间是,故答案为.点睛:本题主要考查利用导数研究函数的单调性,属于简单题.利用导数求函数的单调区间的步骤为:求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间.14、【解题分析】
利用双曲线的焦点坐标,求解,然后求解双曲线的渐近线方程。【题目详解】双曲线的一个焦点是,可得,解得,所以双曲线的渐近线方程是故答案为:【题目点拨】本题考查双曲线的渐近线方程,属于基础题。15、【解题分析】
根据三视图,画出空间几何体,即可求得表面积.【题目详解】根据三视图可知该几何体为三棱柱,画出空间结构体如下:该三棱柱的高为2,上下底面为等腰直角三角形,腰长为所以上下底面的面积为侧面积为所以该三棱柱的表面积为故答案为:【题目点拨】本题考查由三视图还原空间结构体,棱柱表面积的求法,属于基础题.16、【解题分析】分析:利用抛物线的准线方程为,可得抛物线的准线方程.详解:因为抛物线的准线方程为,所以抛物线的准线方程为,故答案为.点睛:本题考查抛物线的准线方程和简单性质,意在考查对基本性质的掌握情况,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)由题意求得首项和公比,据此可得数列的通项公式为;(2)错位相减可得数列的前项和.试题解析:(1)设数列的公比为,∵,,∴,∵,∴,∴,∴或,∵,∴,,∴;(2),,,,∴,∴.18、(1);(2).【解题分析】试题分析:(1)将极坐标方程和参数方程转化为普通方程,再利用直线与圆的位置关系进行求解;(2)利用三角换元法及三角恒等变换进行求解.试题解析:(I)将曲线C的极坐标方程化为直角坐标方程为直线l的参数方程为将代入整理得直线l与曲线C有公共点,的取值范围是(II)曲线C的方程可化为其参数方程为为曲线上任意一点,的取值范围是.考点:1.极坐标方程、参数方程与普通方程的互化.19、(1).(2)比三百大的数字有15个.(3).【解题分析】分析:(1)根据乘法计数原理可知可组成个个;(2)第一类:以2结尾百位有3种选择,十位有3种选择,则有9个,第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个;(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,根据古典概型的计算公式得到结果即可.详解:(1)百位数字有5种选择,十位数字有4种选择,各位数字有3种选择,根据乘法计数原理可知可组成个三位数。(2)各位数字上有两类:第一类:以2结尾百位有3种选择,十位有3种选择。则有9个数字。第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个数字。则比三百大的数字有15个(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,则该数字是大于300的奇数的概率是.点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.20、(1)详见解析;(2)详见解析.【解题分析】
(1)首先将列联表填写完整,根据公式计算,再与临界值表作比较得到答案.(2)首先计算关注人数的概率,再写出分布列,计算数学期望.【题目详解】解:关注不关注合计年轻人103040中老年人402060合计5050100其中代入公式的≈,故有﹪的把握认为关注“中国湖北(潜江)龙虾节”和年龄有关.(2)抽取的6位中老年人中有4人关注,2人不关注,则可能取的值有所以的分布列为123P【题目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同书封面制作2篇
- 2024年导游年度工作总结简单版(3篇)
- 2024年度土地使用权转让合同:工业用地使用权转让协议3篇
- 2024年度机票虚拟现实体验合同:航空公司与VR公司的合作协议3篇
- 分红合作协议书范文
- 砂石材料采购合同
- 河北农业大学现代科技学院《民事诉讼法学》2023-2024学年第一学期期末试卷
- 2024年度艺人经纪合同的经纪服务与收入分配2篇
- 河北农业大学现代科技学院《建筑给水排水工程》2023-2024学年第一学期期末试卷
- 河北农业大学现代科技学院《混凝土结构设计》2022-2023学年第一学期期末试卷
- 东钱湖完整版本
- 颌面骨骨折-颌骨骨折的诊疗(口腔颌面外科)
- 设备设施大中修的界定和内容
- 追觅科技在线测评题
- 2024中国华电集团限公司校招+社招高频难、易错点500题模拟试题附带答案详解
- 冷弯机安全操作规程有哪些(4篇)
- 2024年浙江省初中学业水平考试英语试卷真题(含答案详解)
- 小学道德与法治《中华民族一家亲》完整版课件部编版
- 2024中国铁路成都局集团限公司招聘6006人高校毕业生(一)高频500题难、易错点模拟试题附带答案详解
- 人工草坪铺设合同协议书
- 七年级上册道德与法治《3.1认识自己 》说课稿(2022课标)
评论
0/150
提交评论