湖南省桃花源一中2024届数学高二第二学期期末检测模拟试题含解析_第1页
湖南省桃花源一中2024届数学高二第二学期期末检测模拟试题含解析_第2页
湖南省桃花源一中2024届数学高二第二学期期末检测模拟试题含解析_第3页
湖南省桃花源一中2024届数学高二第二学期期末检测模拟试题含解析_第4页
湖南省桃花源一中2024届数学高二第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省桃花源一中2024届数学高二第二学期期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的最小值为()A. B. C. D.2.设函数,则()A.3 B.4 C.5 D.63.对于椭圆,若点满足,则称该点在椭圆内,在平面直角坐标系中,若点A在过点的任意椭圆内或椭圆上,则满足条件的点A构成的图形为()A.三角形及其内部 B.矩形及其内部 C.圆及其内部 D.椭圆及其内部4.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2015)+f(2016)=()A.0B.2C.3D.45.把函数的图象上所有点向左平行移动个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数是().A. B.C. D.6.已知函数f(x)=2x3+ax+a.过点M(-1,0)引曲线C:y=f(x)的两条切线,这两条切线与y轴分别交于A,B两点,若|MA|=|MB|,则f(x)A.-324 B.-37.设复数,则复数的共轭复数是()A. B. C. D.8.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A. B. C. D.9.函数的最小正周期为()A. B. C. D.10.已知某人每天早晨乘坐的某一班公共汽车的准时到站的概率为,则他在3天乘车中,此班车恰有2天准时到站的概率为()A. B. C. D.11.已知幂函数的图象关于y轴对称,且在上是减函数,则()A.- B.1或2 C.1 D.212.下列函数在其定义域上既是奇函数又是增函数的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点在直径为的球面上,过作两两垂直的三条弦,若其中一条弦长是另一条弦长的倍,则这三条弦长之和的最大值是_________.14.如图,已知正方体,,E为棱的中点,则与平面所成角为_____________.(结果用反三角表示)15.过双曲线的右焦点F作一条垂直于x轴的垂线交双曲线C的两条渐近线于A、B两点,O为坐标原点,则的面积的最小值为________.16.设向量,且,则实数的值是_______;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,为右焦点,圆,为椭圆上一点,且位于第一象限,过点作与圆相切于点,使得点,在的两侧.(Ⅰ)求椭圆的焦距及离心率;(Ⅱ)求四边形面积的最大值.18.(12分)为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将髙一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀,,(I)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”〔Ⅱ)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自[80,90)发言的人数为随机变量x,求x的分布列和期望.19.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(I)求这500件产品质量指标值的样本平均值和样本方差(同一组的数据用该组区间的中点值作代表);(II)由直方图可以认为,这种产品的质量指标服从正态分布,其中近似为样本平均数,近似为样本方差.(i)利用该正态分布,求;(ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值位于区间的产品件数.利用(i)的结果,求.附:若则,.20.(12分)已知函数(为自然对数的底数).(1)求的单调区间;(2)是否存在正实数使得,若存在求出,否则说明理由;21.(12分)已知二次函数,设方程有两个实根(Ⅰ)如果,设函数的图象的对称轴为,求证:;(Ⅱ)如果,且的两实根相差为2,求实数的取值范围.22.(10分)已知函数.(1)若函数在其定义域内单调递增,求实数的最大值;(2)若存在正实数对,使得当时,能成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】,如图所示可知,,因此最小值为2,故选C.点睛:解决本题的关键是根据零点分段去掉绝对值,将函数表达式写成分段函数的形式,并画出图像求出最小值.恒成立问题的解决方法(1)f(x)<m恒成立,须有[f(x)]max<m;(2)f(x)>m恒成立,须有[f(x)]min>m;(3)不等式的解集为R,即不等式恒成立;(4)不等式的解集为∅,即不等式无解.2、C【解题分析】

根据的取值计算的值即可.【题目详解】解:,故,故选:C.【题目点拨】本题考查了函数求值问题,考查对数以及指数的运算,是一道基础题.3、B【解题分析】

由在椭圆上,根据椭圆的对称性,则关于坐标轴和原点的对称点都在椭圆上,即可得结论.【题目详解】设在过的任意椭圆内或椭圆上,则,,即,由椭圆对称性知,都在任意椭圆上,∴满足条件的点在矩形上及其内部,故选:B.【题目点拨】本题考查点到椭圆的位置关系.考查椭圆的对称性.由点在椭圆上,则也在椭圆上,这样过点的所有椭圆的公共部分就是矩形及其内部.4、B【解题分析】

根据条件判断函数f(x)是偶函数,结合条件关系求出函数的周期,进行转化计算即可.【题目详解】y=f(x﹣1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数,令x=﹣1,则f(﹣1+2)﹣f(﹣1)=2f(1),即f(1)﹣f(1)=2f(1)=0,即f(1)=0,则f(x+2)﹣f(x)=2f(1)=0,即f(x+2)=f(x),则函数的周期是2,又f(0)=2,则f(2015)+f(2016)=f(1)+f(0)=0+2=2,故选:B.【题目点拨】本题主要考查函数值的计算,根据抽象函数关系判断函数的周期性和奇偶性是解决本题的关键.5、A【解题分析】

先根据左加右减的性质进行平移,再根据横坐标伸长到原来的2倍时的值变为原来的倍,得到答案.【题目详解】解:向左平移个单位,即以代,得到函数,再把所得图象上所有点的横坐标伸长到原来的2倍,即以代,得到函数:.故选:A.【题目点拨】本题主要考查三角函数的变换,属于基础题.6、A【解题分析】

设切点的横坐标为t,利用切点与点M连线的斜率等于曲线C在切点处切线的斜率,利用导数建立有关t的方程,得出t的值,再由MA=MB得出两切线的斜率之和为零,于此得出a的值,再利用导数求出函数【题目详解】设切点坐标为(t,2t3+at+a),∵y'=6解得t=0或t=-32.∵|MA|=|MB|,∴y'则a=-274,f'(x)=6x2-274.当x<-324或x>【题目点拨】本题考查导数的几何意义,考查利用导数求函数的极值点,在处理过点作函数的切线时,一般要设切点坐标,利用切线与点连线的斜率等于切线的斜率,考查计算能力,属于中等题。7、B【解题分析】分析:根据复数模的定义化简复数,再根据共轭复数概念求结果.详解:因为,所以,所以复数的共轭复数是,选B.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为8、C【解题分析】

由,得出,计算出基本事件的总数以及事件所包含的基本事件数,然后利用古典概型的概率公式可计算出所求事件的概率.【题目详解】,,即,事件“”所包含的基本事件有:、、、、、、、、、、、、、、、、、、、、,共个,所有的基本事件数为,因此,事件“”的概率为.故选:C.【题目点拨】本题考查利用古典概型的概率公式计算事件的概率,解题的关键就是求出总的基本事件数和所求事件所包含的基本事件数,考查计算能力,属于中等题.9、B【解题分析】

先利用二倍角的余弦公式化简函数解析式,然后利用周期公式可求答案.【题目详解】函数的最小正周期为:本题正确选项:【题目点拨】本题考查三角函数的周期性及其求法,考查二倍角的余弦公式,属基础题.10、B【解题分析】由题意,恰有2天准时到站的概率为,故选择B。11、C【解题分析】分析:由为偶数,且,即可得结果.详解:幂函数的图象关于轴对称,且在上是减函数,为偶数,且,解得,故选C.点睛:本题考查幂函数的定义、幂函数性质及其应用,意在考查综合利用所学知识解决问题的能力.12、C【解题分析】

根据函数奇偶性定义,代入-x检验即可判断是奇函数或偶函数;根据基本初等函数的图像即可判断函数是否为增函数.【题目详解】A.在定义域上既不是增函数,也不是减函数;B.在定义域上既不是偶函数,也不是奇函数;C.在其定义域上既是奇函数又是增函数;D.在定义域上既不是偶函数,也不是奇函数,故选C.【题目点拨】本题考查了函数的奇偶性及单调性的简单应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

设三条弦长分别为x,2x,y,由题意得到关于x,y的等量关系,然后三角换元即可确定弦长之和的最大值.【题目详解】设三条弦长分别为x,2x,y,则:,即:5x2+y2=6,设,则这3条弦长之和为:3x+y=,其中,所以它的最大值为:.故答案为.【题目点拨】本题主要考查长方体外接球模型的应用,三角换元求最值的方法等知识,意在考查学生的转化能力和计算求解能力.14、【解题分析】

作出辅助线,由题意首先找到AE与平面所成角,然后结合几何关系求解线面角的大小即可.【题目详解】如图所示,连结BE,由题意可知:,∵AB⊥平面B1BCC1,∴∠AEB是AE与平面B1BCC1所成的角,,.故答案为:.【题目点拨】本题主要考查线面角的计算,空间几何体中的线面关系等知识,意在考查学生的转化能力和计算求解能力.15、1【解题分析】

求得双曲线的b,c,求得双曲线的渐近线方程,将x=c代入双曲线的渐近线方程,可得A,B的坐标,求得△OAB的面积,运用基本不等式可得最小值.【题目详解】解:双曲线C:1的b=2,c2=a2+4,(a>0),设F(c,0),双曲线的渐近线方程为y=±x,由x=c代入可得交点A(c,),B(c,),即有△OAB的面积为Sc•=2•2(a)≥41,当且仅当a=2时,△OAB的面积取得最小值1.故答案为:1.【题目点拨】本题考查双曲线的方程和性质,主要是渐近线方程的运用,考查三角形的面积的最值求法,注意运用基本不等式,考查运算能力,属于中档题.16、2【解题分析】

由条件利用两个向量共线的性质求得x的值.【题目详解】解:∵,,且,∴2x=,即x=2故答案为2【题目点拨】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ).【解题分析】分析:(Ⅰ)利用椭圆的几何性质求椭圆的焦距及离心率.(Ⅱ)设(,),先求出四边形面积的表达式,再利用基本不等式求它的最大值.(Ⅰ)在椭圆:中,,,所以,故椭圆的焦距为,离心率.(Ⅱ)设(,),则,故.所以,所以,.又,,故.因此.由,得,即,所以,当且仅当,即,时等号成立.点睛:本题的关键在于求此的表达式和化简,由于四边形是不规则的图形,所以用割补法求其面积,其面积求出来之后,又要利用已知条件将其化简为,再利用基本不等式求其最小值.18、(1)列联表见解析,有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)分布列见解析,【解题分析】分析:(1)先根据数据填表,再代入卡方公式求,最后与参考数据作比较得结论,(2)先根据分层抽样得抽取人数,再确定随机变量取法,利用组合数确定对应概率,列表可得分布列,最后根据数学期望公式求期望.详解:(1)依题意得有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)从乙班分数段中抽人数分别为2、3、2.依题意随机变量的所有可能取值为点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.19、(I);(II)(i);(ii).【解题分析】试题分析:(I)由频率分布直方图可估计样本特征数众数、中位数、均值、方差.若同一组的数据用该组区间的中点值作代表,则众数为最高矩形中点横坐标.中位数为面积等分为的点.均值为每个矩形中点横坐标与该矩形面积积的累加值.方差是矩形横坐标与均值差的平方的加权平均值.(II)(i)由已知得,,故;(ii)某用户从该企业购买了100件这种产品,相当于100次独立重复试验,则这100件产品中质量指标值位于区间的产品件数,故期望.试题分析:(I)抽取产品的质量指标值的样本平均值和样本方差分别为,.(II)(i)由(I)知,服从正态分布,从而.(ii)由(i)可知,一件产品的质量指标值位于区间的概率为,依题意知,所以.【考点定位】1、频率分布直方图;2、正态分布的原则;3、二项分布的期望.20、(1)单调递减区间是,单调递增区间为;(2)不存在,证明见解析.【解题分析】分析:(1)先求一阶导函数的根,求解或的解集,写出单调区间.(2)函数在上的单调性,和函数的对称性说明不存在详解:(1)函数的单调递减区间是,单调递增区间为.(2)不存在正实数使得成立,事实上,由(1)知函数在上递增,而当,有,在上递减,有,因此,若存在正实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论