2024届重庆高二数学第二学期期末考试试题含解析_第1页
2024届重庆高二数学第二学期期末考试试题含解析_第2页
2024届重庆高二数学第二学期期末考试试题含解析_第3页
2024届重庆高二数学第二学期期末考试试题含解析_第4页
2024届重庆高二数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届重庆高二数学第二学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.2.设,是抛物线上两点,抛物线的准线与轴交于点,已知弦的中点的横坐标为3,记直线和的斜率分别为和,则的最小值为()A. B.2 C. D.13.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.已知随机变量服从正态分布,且,则()A.0.4 B.0.5 C.0.6 D.0.75.设是含数的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,的可能取值只能是()A. B. C. D.6.设复数,若,则的概率为()A. B. C. D.7.已知复数满足(为虚数单位),则复数的虚部等于()A.1 B.-1 C.2 D.-28.已知函数,在区间内任取两个实数,,且,若不等式恒成立,则实数的取值范围是A. B. C. D.9.展开式中的系数为()A.30 B.15 C.0 D.-1510.抛物线上的点到定点和定直线的距离相等,则的值等于()A. B. C.16 D.11.的值等于()A.7351 B.7355 C.7513 D.731512.已知直线y=x+1与曲线y=A.1B.2C.-1D.-2二、填空题:本题共4小题,每小题5分,共20分。13.已知二项式的展开式中各项的二项式系数之和是16,则展开式中的含项的系数是_________.14.已知,则展开式中的系数为__________.15.在极坐标系中,曲线和相交于点A,B,则线段AB的中点E到极点的距离是______.16.函数的导函数__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知甲、乙、丙、丁、戊、己6人.(以下问题用数字作答)(1)邀请这6人去参加一项活动,必须有人去,去几人自行决定,共有多少种不同的安排方法?(2)将这6人作为辅导员全部安排到3项不同的活动中,求每项活动至少安排1名辅导员的方法总数是多少?18.(12分)(1)化简求值:(2)化简求值:+19.(12分)选修4-5:不等式选讲已知函数.(Ⅰ)当时,求函数的定义域;(Ⅱ)若关于的不等式的解集是,求的取值范围.20.(12分)在直角坐标系中,曲线的参数方程为(为参数).(Ⅰ)求曲线的普通方程;(Ⅱ)经过点作直线,与曲线交于两点.如果点恰好为线段的中点,求直线的方程.21.(12分)已知集合,.(1)若,,求实数的取值范围;(2)若,且,求实数的取值范围.22.(10分)已知某盒子中共有个小球,编号为号至号,其中有个红球、个黄球和个绿球,这些球除颜色和编号外完全相同.(1)若从盒中一次随机取出个球,求取出的个球中恰有个颜色相同的概率;(2)若从盒中逐一取球,每次取后立即放回,共取次,求恰有次取到黄球的概率;(3)若从盒中逐一取球,每次取后不放回,记取完黄球所需次数为,求随机变量的分布列及数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【题目详解】,因为为锐角三角形,所以,,,故,选B.【题目点拨】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.2、D【解题分析】

设,运用点差法和直线的斜率公式和中点坐标公式,可得,再由基本不等式可得所求最小值.【题目详解】设,可得,相减可得,可得,又由,所以,则,当且仅当时取等号,即的最小值为.故选:D.【题目点拨】本题主要考查了抛物线的方程和性质,考查直线的斜率公式和点差法的运用,以及中点坐标公式,考查方程思想和运算能力,属于基础题.3、B【解题分析】分析:根据不等式的解法求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.详解:当x>0时,由|x|﹣1>2x得x﹣1>2x,得x<﹣1,此时无解,当x≤0时,由|x|﹣1>2x得﹣x﹣1>2x,得x<﹣,综上不等式的解为x<﹣,由≤0得x+1<0得x<﹣1,则“|x|﹣1>2x”是“≤0”的必要不充分条件,故选:B.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.4、A【解题分析】∵P(x≤6)=0.9,∴P(x>6)=1﹣0.9=0.1.∴P(x<0)=P(x>6)=0.1,∴P(0<x<3)=0.5﹣P(x<0)=0.2.故答案为A.5、B【解题分析】

利用函数的定义即可得到结果.【题目详解】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,故选B.【题目点拨】本题考查函数的定义,即“对于集合A中的每一个值,在集合B中有唯一的元素与它对应”(不允许一对多).6、C【解题分析】

试题分析:,作图如下,可得所求概率,故选C.考点:1、复数及其性质;2、圆及其性质;3、几何概型.7、A【解题分析】由题设可得,则复数的虚部等于,应选答案A。8、B【解题分析】分析:首先,由的几何意义,得到直线的斜率,然后,得到函数图象上在区间(1,2)内任意两点连线的斜率大于1,从而得到f′(x)=>1在(1,2)内恒成立.分离参数后,转化成a>2x2+3x+1在(1,2)内恒成立.从而求解得到a的取值范围.详解:∵的几何意义为:表示点(p+1,f(p+1))与点(q+1,f(q+1))连线的斜率,∵实数p,q在区间(0,1)内,故p+1和q+1在区间(1,2)内.不等式>1恒成立,∴函数图象上在区间(1,2)内任意两点连线的斜率大于1,故函数的导数大于1在(1,2)内恒成立.由函数的定义域知,x>﹣1,∴f′(x)=>1在(1,2)内恒成立.即a>2x2+3x+1在(1,2)内恒成立.由于二次函数y=2x2+3x+1在[1,2]上是单调增函数,故x=2时,y=2x2+3x+1在[1,2]上取最大值为15,∴a≥15∴a∈[15,+∞).故选A.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.9、C【解题分析】

根据的展开式的通项公式找出中函数含项的系数和项的系数做差即可.【题目详解】的展开式的通项公式为,故中函数含项的系数是和项的系数是所以展开式中的系数为-=0【题目点拨】本题考查了二项式定理的应用,熟练掌握二项式定理是解本题的关键.10、C【解题分析】

根据抛物线定义可知,定点为抛物线的焦点,进而根据定点坐标求得.【题目详解】根据抛物线定义可知,定点为抛物线的焦点,且,,解得:.故选:C.【题目点拨】本题考查抛物线的定义,考查对概念的理解,属于容易题.11、D【解题分析】原式等于,故选D.12、B【解题分析】设切点P(x0,y∴x二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先由二项式系数之和求出,再根据二项展开式的通项公式,即可求出结果.【题目详解】因为二项式的展开式中各项的二项式系数之和是16,所以,即;所以,其二项展开式的通项为:,令得,所以,因此含项的系数是.故答案为:.【题目点拨】本题主要考查求指定项的系数,熟记二项式定理即可,属于常考题型.14、448.【解题分析】由题意可得:,则展开式的通项公式为:,令可得:,则的系数为:.15、2【解题分析】

将曲线方程化为直角坐标系下的方程,联立方程组,由此求得中点的坐标,再求出其到极点的距离.【题目详解】将曲线方程化为直角坐标方程可得将曲线方程化为直角坐标方程可得,联立两方程可得故可得中点坐标为,则其到坐标原点的距离即为所求,即.故答案为:2.【题目点拨】本题考查将极坐标方程化为普通方程,属基础题.16、【解题分析】分析:根据导数运算法则直接计算.详解:点睛:本题考查基本初等函数导数,考查基本求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)63种不同的去法(2)种【解题分析】

(1)邀请这6人去参加一项活动,必须有人去,去1,2,3,4,5,6个人,利用组合数求解即可.(2)第一类:6人中恰有4人分配到其中一项活动中,另外两项活动各分一人,第二类:6人中恰有3人分配到其中一项活动中,第三类:6人平均分配到三项活动中,求出方法数,推出结果即可.【题目详解】(1)由题意,从甲、乙、丙、丁、戊、己6人中,邀请这6人去参加一项活动,必须有人去,共有,故共有63种不同的去法.(2)该问题共分为三类:第一类:6人中恰有4人分配到其中一项活动中,另外两项活动各分一人,共有种;第二类:6人中恰有3人分配到其中一项活动中,共有种;第三类:6人平均分配到三项活动中,共有种,所以每项活动至少安排1名辅导员的方法总数为:种.【题目点拨】本题主要考查了分类计数原理,以及排列、组合的综合应用,其中正确理解题意,合理分类,正确使用排列、组合求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.18、(1)1,(2)【解题分析】

(1)利用倍角公式、同角三角函数基本关系式及诱导公式化简求值;(2)利用同角三角函数基本关系式、诱导公式及三角函数的和差化积化简求值.【题目详解】(1)===;(2)+=+==(﹣)==.【题目点拨】本题考查三角函数的恒等变换及化简求值,考查诱导公式及同角三角函数基本关系式的应用,是中档题.19、(1)或(2).【解题分析】试题分析:(1)函数去绝对值号化为分段函数即可求解;(2)分离参数得:在上恒成立,利用绝对值性质即可得到m范围内.试题解析:(1)由题意,令解得或,∴函数的定义域为或(2),∴,即.由题意,不等式的解集是,则在上恒成立.而,故.点睛:恒成立问题是常见数学问题,一般可考虑分离参数处理,分离参数后问题转化为求最值,可考虑均值不等式、函数最值,绝对值的性质、三角函数等方法来处理.20、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)利用求曲线的普通方程;(Ⅱ)经过点的直线的参数方程为(为参数),代入曲线中,可得,利用韦达定理求出,结合参数的几何意义得,计算整理即可得到直线的斜率,进而通过点斜式求出直线方程。【题目详解】(Ⅰ)由,且,所以的普通方程为.(Ⅱ)设直线的倾斜角为,则经过点的直线的参数方程为(为参数),代入曲线中,可得.由的几何意义知.因为点在椭圆内,这个方程必有两个实根,所以.由是中点,所以,即,解得所以直线的斜率为,所直线的方程是,即.【题目点拨】本题考查参数方程与普通方程的互化,直线的参数方程,解题的一般思路是求出直线的参数方程代入圆锥曲线的普通方程,结合题意通过韦达定理解答。21、(1);(2)【解题分析】

结合指数函数和对数函数性质可分别求得集合和集合;(1)由交集定义得到,分别在和两种情况下构造不等式求得结果;(2)由并集定义得到,根据交集结果可构造不等式求得结果.【题目详解】(1)当时,,解得:,满足当时,,解得:综上所述:实数的取值范围为(2),解得:实数的取值范围为【题目点拨】本题考查根据集合包含关系、交集结果求解参数范围的问题,涉及到指数函数和对数函数性质的应用;易错点是在根据包含关系求参数范围时,忽略子集可能为空集的情况,造成范围求解错误.22、(1);(2);(3)见解析.【解题分析】

(1)事件“取出的个球中恰有个颜色相同”分为两种情况“个球中有个红球”和“个球中有个黄球”,然后利用古典概型的概率公式和互斥事件的概率加法公式可计算出所求事件的概率;(2)计算出每次取球取到黄球的概率为,然后利用独立重复试验概率来计算出所求事件的概率;(3)由题意得出的可能取值有、、、、,利用排列组合思想求出随机变量在对应取值时的概率,于此可列出随机变量的分布列,并计算出随机变量的数学期望.【题目详解】(1)从盒中一次随机取出个球,记取出的个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论