贵州省台江县第二中学2024届数学高二第二学期期末监测试题含解析_第1页
贵州省台江县第二中学2024届数学高二第二学期期末监测试题含解析_第2页
贵州省台江县第二中学2024届数学高二第二学期期末监测试题含解析_第3页
贵州省台江县第二中学2024届数学高二第二学期期末监测试题含解析_第4页
贵州省台江县第二中学2024届数学高二第二学期期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省台江县第二中学2024届数学高二第二学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则()A. B. C. D.2.已知双曲线的焦距为,其渐近线方程为,则焦点到渐近线的距离为()A.1 B. C.2 D.3.双曲线的渐近线的斜率是()A. B. C. D.4.(2018年天津卷文)设变量x,y满足约束条件则目标函数的最大值为A.6 B.19 C.21 D.455.给出以下命题,其中真命题的个数是若“或”是假命题,则“且”是真命题命题“若,则或”为真命题已知空间任意一点和不共线的三点,若,则四点共面;直线与双曲线交于两点,若,则这样的直线有3条;A.1 B.2 C.3 D.46.若双曲线的一条渐近线经过点,则此双曲线的离心率为()A. B. C. D.7.已知回归直线方程中斜率的估计值为,样本点的中心,则回归直线方程为()A. B.C. D.8.设为虚数单位,则复数()A. B. C. D.9.集合,则等于()A. B. C. D.10.如图,在ΔABC中,AN=12AC,P是A.14 B.1 C.1211.若函数在区间上的最小值为,则实数的值为()A. B. C. D.12.五名应届毕业生报考三所高校,每人报且仅报一所院校,则不同的报名方法的种数是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.“”是“”的_______条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中一个)14.已知圆C1:,圆C2:,M,N分别是圆C1,C2上的动点,P为轴上的动点,则的最小值_____.15.如图,正方体的棱长为1,E为线段上的一点,则三棱锥的体积为_____.16.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二次函数f(x)的最小值为﹣4,且关于x的不等式f(x)≤0的解集为{x|﹣1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)的零点个数.18.(12分)(1)设集合},,且,求实数m的值.(2)设,是两个复数,已知,,且·是实数,求.19.(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知点的直角坐标为,曲线的极坐标方程为,直线过点且与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若,求直线的直角坐标方程.20.(12分)某育种基地对某个品种的种子进行试种观察,经过一个生长期培养后,随机抽取株作为样本进行研究.株高在及以下为不良,株高在到之间为正常,株高在及以上为优等.下面是这个样本株高指标的茎叶图和频率分布直方图,但是由于数据递送过程出现差错,造成图表损毁.请根据可见部分,解答下面的问题:(1)求的值并在答题卡的附图中补全频率分布直方图;(2)通过频率分布直方图估计这株株高的中位数(结果保留整数);(3)从育种基地内这种品种的种株中随机抽取2株,记表示抽到优等的株数,由样本的频率作为总体的概率,求随机变量的分布列(用最简分数表示).21.(12分)在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)求曲线上的直线距离最大的点的直角坐标.22.(10分)已知函数(1)若函数在区间上为减函数,求实数的取值范围(2)当时,不等式恒成立,求实数的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:由题意可知,,然后利用二项式定理进行展开,使之与进行比较,可得结果详解:由题可知:而则故选点睛:本题主要考查了二次项系数的性质,根据题目意思,将转化为是本题关键,然后运用二项式定理展开求出结果2、A【解题分析】

首先根据双曲线的焦距得到,再求焦点到渐近线的距离即可.【题目详解】由题知:,,.到直线的距离.故选:A【题目点拨】本题主要考查双曲线的几何性质,同时考查了点到直线的距离公式,属于简单题.3、C【解题分析】

直接利用渐近线公式得到答案.【题目详解】双曲线渐近线方程为:答案为C【题目点拨】本题考查了双曲线的渐近线方程,属于简单题.4、C【解题分析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.5、C【解题分析】(1)若“或”是假命题,则是假命题p是真命题,是假命题是真命题,故且真命题,选项正确.(2)命题“若,则或”的逆否命题是若a=2,且b=3,则a+b=5.这个命题是真命题,故原命题也是真命题.(3)∵++=1,∴P,A,B,C四点共面,故(3)正确,(4)由双曲线方程得a=2,c=3,即直线l:y=k(x﹣3)过双曲线的右焦点,∵双曲线的两个顶点之间的距离是2a=4,a+c=2+3=5,∴当直线与双曲线左右两支各有一个交点时,当k=0时2a=4,则满足|AB|=5的直线有2条,当直线与实轴垂直时,当x=c=3时,得,即=,即则y=±,此时通径长为5,若|AB|=5,则此时直线AB的斜率不存在,故不满足条件.综上可知有2条直线满足|AB|=5,故(4)错误,故答案为C.6、D【解题分析】因为双曲线的一条渐近线经过点(3,-4),故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线共渐近线的可设为;(2)若渐近线方程为,则可设为;(3)双曲线的焦点到渐近线的距离等于虚半轴长;(4)的一条渐近线的斜率为.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.7、A【解题分析】

由题意得在线性回归方程中,然后根据回归方程过样本点的中心得到的值,进而可得所求方程.【题目详解】设线性回归方程中,由题意得,∴.又回归直线过样本点的中心,∴,∴,∴回归直线方程为.故选A.【题目点拨】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.8、D【解题分析】

由复数的乘除运算即可求得结果【题目详解】故选【题目点拨】本题主要考查了复数的除法运算,解题的关键是要掌握复数四则运算法则,属于基础题。9、B【解题分析】试题分析:集合,,,,故选B.考点:指数函数、对数函数的性质及集合的运算.10、C【解题分析】

以AB,AC作为基底表示出【题目详解】∵P,N分别是∴AP=又AP=mAB+【题目点拨】本题主要考查平面向量基本定理以及向量的线性运算,意在考查学生的逻辑推理能力.11、A【解题分析】

求出,(或)是否恒成立对分类讨论,若恒成立求出最小值(或不存在最小值),若不恒成立,求出极值最小值,建立的关系式,求解即可.【题目详解】.(1)当时,,所以在上单调递减,,(舍去).(2)当时,.①当时,,此时在上恒成立,所以在上单调递减,,解得(舍去);②当时,.当时,,所以在上单调递减,当时,,所以在上单调递增,于是,解得.综上,.故选:A【题目点拨】本题考查函数的最值,利用导数是解题的关键,考查分类讨论思想,如何合理确定分类标准是难点,属于中档题.12、D【解题分析】由题意,每个人可以报任何一所院校,则结合乘法原理可得:不同的报名方法的种数是.本题选择D选项.二、填空题:本题共4小题,每小题5分,共20分。13、必要不充分【解题分析】

解出的解集,根据对应的集合之间的包含关系进行判断.【题目详解】,或“”是“”的必要不充分条件.故答案为:必要不充分【题目点拨】本题考查充分、必要条件充分、必要条件的三种判断方法:(1)定义法:根据进行判断.(2)集合法:根据成立对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.14、【解题分析】

求出圆关于轴对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可得到的最小值.【题目详解】如图所示,圆关于轴对称圆的圆心坐标,以及半径,圆的圆心坐标为,半径为,所以的最小值为圆与圆的圆心距减去两个圆的半径和,即.【题目点拨】本题主要考查了圆的对称圆的方程的求法,以及两圆的位置关系的应用,其中解答中把的最小值转化为圆与圆的圆心距减去两个圆的半径和是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.15、【解题分析】以△为底面,则易知三棱锥的高为1,故16、【解题分析】该同学通过测试的概率为,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)个零点.【解题分析】

解:(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|﹣1≤x≤3,x∈R},∴f(x)=a(x+1)(x﹣3)=a[(x﹣1)2﹣4](a>0)∴f(x)min=﹣4a=﹣4∴a=1故函数f(x)的解析式为f(x)=x2﹣2x﹣3(2)g(x)4lnx﹣2(x>0),∴g′(x)x,g′(x),g(x)的取值变化情况如下:x(0,1)1(1,3)3(3,+∞)g′(x)+0﹣0+g(x)单调增加极大值单调减少极小值单调增加当0<x≤3时,g(x)≤g(1)=﹣4<0;又g(e5)20﹣2>25﹣1﹣22=9>0故函数g(x)只有1个零点,且零点【题目点拨】本题主要考查二次函数与一元二次不等式的关系,函数零点的概念,导数运算法则、用导数研究函数图像的意识、考查数形结合思想,考查考生的计算推理能力及分析问题、解决问题的能力.18、(1)或或(2)或【解题分析】

(1)解方程得到集合,再分别讨论和两种情况,即可得出结果;(2)先设,根据题中条件,得到,,即可求出结果.【题目详解】解:(1)由解得:或∴,又∵∴当时,此时符合题意.当时,则.由得,所以或解得:或综上所述:或或(2)设,∵∴,即①又,且,是实数,∴②由①②得,,或,∴或【题目点拨】本题主要考查由集合间的关系求参数的问题,以及复数的运算,熟记子集的概念,以及复数的运算法则即可,属于常考题型.19、(1)(2)直线的直角坐标方程为或【解题分析】分析:(1)根据极坐标和直角坐标间的转化公式可得所求.(2)根据题意设出直线的参数方程,代入圆的方程后得到关于参数的二次方程,根据根与系数的关系和弦长公式可求得倾斜角的三角函数值,进而可得直线的直角坐标方程.详解:(1)由,可得,得,∴曲线的直角坐标方程为.(2)由题意设直线的参数方程为(为参数),将参数方程①代入圆的方程,得,∵直线与圆交于,两点,∴.设,两点对应的参数分别为,,则,∴,化简有,解得或,∴直线的直角坐标方程为或.点睛:利用直线参数方程中参数的几何意义解题时,要注意使用的前提条件,只有当参数的系数的平方和为1时,参数的绝对值才表示直线上的动点到定点的距离.同时解题时要注意根据系数关系的运用,合理运用整体代换可使得运算简单.20、(1),补图见解析(2)估计这株株高的中位数为82(3)见解析【解题分析】

根据茎叶图和频率直方图,求出中位数,得离散型随机变量的分布列.【题目详解】解:(1)由第一组知,得,补全后的频率分布直方图如图(2)设中位数为,前三组的频率之和为,前四组的频率之和为,∴,∴,得,∴估计这株株高的中位数为82.(3)由题设知,则的分布列为012【题目点拨】本题考查频率直方图及中位数,离散型随机变量的分布列,属于中档题.21、(1)(2)【解题分析】分析:(1)利用极坐标与直角坐标互化公式可得曲线的直角坐标方程为.(2)直线方程为,设圆上点的坐标为,结合点到直线距离公式和三角函数的性质可知满足题意时点坐标为.详解:(1)因为,,,所以曲线的直角坐标方程为.(2)直线方程为,圆的标准方程为,所以设圆上点坐标为,则,所以当,即时距离最大,此时点坐标为.点睛:本题主要考查极坐标方程与直角坐标方程的转化,直线与圆的位置关系,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.22、(1)(2)【解题分析】试题分析:(1)由函数求出导数,由区间上为减函数得到恒成立,通过分离参数,求函数最值得到的范围(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论