陕西省彬州市彬州中学2024届数学高二第二学期期末调研模拟试题含解析_第1页
陕西省彬州市彬州中学2024届数学高二第二学期期末调研模拟试题含解析_第2页
陕西省彬州市彬州中学2024届数学高二第二学期期末调研模拟试题含解析_第3页
陕西省彬州市彬州中学2024届数学高二第二学期期末调研模拟试题含解析_第4页
陕西省彬州市彬州中学2024届数学高二第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省彬州市彬州中学2024届数学高二第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则下列结论中不恒成立的是()A. B. C. D.2.已知定义在上的函数,若是奇函数,是偶函数,当时,,则()A. B. C. D.3.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有A.21种B.315种C.153种D.143种4.已知函数则使函数g(x)=f(x)+x-m有零点的实数m的取值范围是()A.[0,1) B.(-∞,1)C.(-∞,1]∪(2,+∞) D.(-∞,0]∪(1,+∞)5.已知函数,则等于()A.-1 B.0 C.1 D.6.对两个变量x,y进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…(xn,yn),则下列说法中不正确的是A.由样本数据得到的回归方程必过样本点的中心B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.两个随机变量的线性相关性越强,相关系数的绝对值越接近于1.7.已知是虚数单位,若复数满足,则复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知复数是纯虚数是虚数单位),则实数等于()A.-2 B.2 C. D.9.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则10.已知复数满足(是虚数单位),则=()A. B. C. D.11.10张奖券中有3张是有奖的,某人从中依次抽取两张.则在第一次抽到中奖券的条件下,第二次也抽到中奖券的概率是()A. B. C. D.12.已知命题,命题,则()A.命题是假命题 B.命题是真命题C.命题是真命题 D.命题是假命题二、填空题:本题共4小题,每小题5分,共20分。13.已知、的取值如表所示:01342.24.34.86.7从散点图分析,与线性相关,且,则______.14.设过抛物线上任意一点(异于原点)的直线与抛物线交于,两点,直线与抛物线的另一个交点为,则__________.15.在复数范围内解方程(i为虚数单位),________16.已知复数,其中是虚数单位,则复数的实部为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,,.(Ⅰ)证明:数列是等比数列,并求数列的通项公式;(Ⅱ)设,求数列的前项和.18.(12分)甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记1分,海选不合格记0分.假设甲、乙、丙海选合格的概率分别为,他们海选合格与不合格是相互独立的.(1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;(2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量,求随机变量的分布列和数学期望.19.(12分)已知抛物线,过点的直线交抛物线于两点,坐标原点为,.(1)求抛物线的方程;(2)当以为直径的圆与轴相切时,求直线的方程.20.(12分)(衡水金卷2018年普通高等学校招生全国统一考试模拟试卷)如图,在三棱柱中,侧棱底面,且,是棱的中点,点在侧棱上运动.(1)当是棱的中点时,求证:平面;(2)当直线与平面所成的角的正切值为时,求二面角的余弦值.21.(12分)已知函数,.(1)当时,求的单调区间;(2)若有两个零点,求实数的取值范围.22.(10分)已知函数有两个零点,.(Ⅰ)求的取值范围;(Ⅱ)证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析两数可以是满足,任意数,利用特殊值法即可得到正确选项.详解:若,不妨设a代入各个选项,错误的是A、B,

当时,C错.

故选D.点睛:利用特殊值法验证一些式子错误是有效的方法,属于基础题.2、A【解题分析】

根据是偶函数判出是函数的对称轴,结合是奇函数可判断出函数是周期为的周期函数,由此求得的值.【题目详解】由于是偶函数,所以函数的一条对称轴为,由于函数是奇函数,函数图像关于原点对称,故函数是周期为的周期函数,故,故选A.【题目点拨】本小题主要考查函数的奇偶性、考查函数的对称性、考查函数的周期性,考查函数值的求法,属于基础题.3、D【解题分析】由题意,选一本语文书一本数学书有9×7=63种,选一本数学书一本英语书有5×7=35种,选一本语文书一本英语书有9×5=45种,∴共有63+45+35=143种选法.故选D.4、D【解题分析】试题分析:函数的零点就是方程的根,作出的图象,观察它与直线的交点,得知当时,或时有交点,即函数有零点.考点:函数的零点.点评:本题充分体现了数形结合的数学思想.函数的零点、方程的根、函数图像与x轴的交点,做题时注意三者之间的等价转化.5、B【解题分析】

先求,再求.【题目详解】由已知,得:所以故选:B【题目点拨】本题考查了分段函数求值,属于基础题.6、C【解题分析】由样本数据得到的回归方程必过样本中心,正确;残差平方和越小的模型,拟合的效果越好,正确用相关指数R2来刻画回归效果,R2越大,说明模型的拟合效果越好,不正确,线性相关系数|r|越大,两个变量的线性相关性越强,故正确。故选:C.7、C【解题分析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】,,复数对应的点的坐标为,,在第三象限.故选.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.8、C【解题分析】

化简复数,根据复数为纯虚数得到答案.【题目详解】知复数是纯虚数且故答案选C【题目点拨】本题考查了复数计算,属于简单题.9、D【解题分析】

根据各选项的条件及结论,可画出图形或想象图形,再结合平行、垂直的判定定理即可找出正确选项.【题目详解】选项A错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面;选项B错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C错误,一个平面内垂直于两平面交线的直线,不一定和另一平面垂直,可能斜交;选项D正确,由,便得,又,,即.故选:D.【题目点拨】本题考查空间直线位置关系的判定,这种位置关系的判断题,可以举反例或者用定理简单证明,属于基础题.10、A【解题分析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】解:由,得,.故选.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.11、B【解题分析】

根据第一次抽完的情况下重新计算总共样本数和满足条件样本数,再由古典概型求得概率。【题目详解】在第一次抽中奖后,剩下9张奖券,且只有2张是有奖的,所以根据古典概型可知,第二次中奖的概率为。选B.【题目点拨】事件A发生的条件下,事件B发生的概率称为“事件A发生的条件下,事件B发生的条件概率”,记为;条件概率常有两种处理方法:(1)条件概率公式:。(2)缩小样本空间,即在事件A发生后的己知事实情况下,用新的样本空间的样本总数和满足特征的样本总数来计算事件B发生的概率。12、C【解题分析】试题分析:先判断出命题p与q的真假,再由复合命题真假性的判断法则,即可得到正确结论.解:由于x=10时,x﹣2=8,lgx=lg10=1,故命题p为真命题,令x=0,则x2=0,故命题q为假命题,依据复合命题真假性的判断法则,得到命题p∨q是真命题,命题p∧q是假命题,¬q是真命题,进而得到命题p∧(¬q)是真命题,命题p∨(¬q)是真命题.故答案为C.考点:全称命题;复合命题的真假.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据数据表求解出,代入回归直线,求得的值.【题目详解】根据表中数据得:,又由回归方程知回归方程的斜率为截距本题正确结果:【题目点拨】本题考查利用回归直线求实际数据,关键在于明确回归直线恒过,从而可构造出关于的方程.14、【解题分析】分析:画出图形,将三角形的面积比转化为线段的长度比,之后转化为坐标比,设出点的坐标,写出直线的方程,联立方程组,求得交点的坐标,最后将坐标代入,求得比值,详解:画出对应的图就可以发现,设,则直线,即,与联立,可求得,从而得到面积比为,故答案是3.点睛:解决该题的关键不是求三角形的面积,而是应用面积公式将面积比转化为线段的长度比,之后将长度比转化为坐标比,从而将问题简化,求得结果.15、-.【解题分析】分析:首先对等式的右边进行复数的除法运算,得到最简形式,设出要求的复数的结果,把设出的结果代入等式,根据复数相等的充要条件写出关于x的方程,解方程即可.详解:原方程化简为,设z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1﹣i,∴x2+y2=1且2x=﹣1,解得x=﹣且y=±,∴原方程的解是z=﹣.故答案为﹣.点睛:本题主要考查复数的除法和乘方运算,考查复数相等的充要条件,是一个基础题,解题时没有规律和技巧可寻,只要认真完成,则一定会得分.16、【解题分析】

通过分子分母同时乘以分母的共轭复数化简,从而得到答案.【题目详解】由题意复数,因此复数的实部为.【题目点拨】本题主要考查复数的四则运算,实部的相关概念,难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解题分析】试题分析:(1)由得出,由等比数列的定义得出数列为等比数列,并且求出的通项公式;(2)求出数列的通项公式,利用错位相减法求出数列的前n项和.试题解析:(1)由,得,即,且,所以数列是以为首项,为公比的等比数列.所以,故数列的通项公式为.(2)由(1)知,,所以.所以.①.②①-②,得,所以.故数列的前项和.18、(1).(2)的分布列为

0

1

2

1

.【解题分析】试题分析:概率与统计类解答题是高考常考的题型,以排列组合和概率统计等知识为工具,主要考查对概率事件的判断及其概率的计算,随机变量概率分布列的性质及其应用:对于(1),从所求事件的对立事件的概率入手即;对于(2),根据的所有可能取值:0,1,2,1;分别求出相应事件的概率P,列出分布列,运用数学期望计算公式求解即可.(1)记“甲海选合格”为事件A,“乙海选合格”为事件B,“丙海选合格”为事件C,“甲、乙、丙至少有一名海选合格”为事件E..(2)的所有可能取值为0,1,2,1.;;;.所以的分布列为

0

1

2

1

.考点:离散型随机变量的概率、分布列和数学期望.19、(1);(2)或【解题分析】试题分析:本题主要考查抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题等基础知识,同时考查考生的分析问题解决问题的能力、转化能力、运算求解能力以及数形结合思想.第一问,设出直线方程与抛物线方程联立,利用韦达定理得到y1+y2,y1y2,,代入到中解出P的值;第二问,结合第一问的过程,利用两种方法求出的长,联立解出m的值,从而得到直线的方程.试题解析:(Ⅰ)设l:x=my-2,代入y2=2px,得y2-2pmy+4p=1.(*)设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则.因为,所以x1x2+y1y2=12,即4+4p=12,得p=2,抛物线的方程为y2=4x.…5分(Ⅱ)由(Ⅰ)(*)化为y2-4my+2=1.y1+y2=4m,y1y2=2.…6分设AB的中点为M,则|AB|=2xm=x1+x2=m(y1+y2)-4=4m2-4,①又,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,.所以,直线l的方程为,或.…12分考点:抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题.20、(1)见解析;(2).【解题分析】试题分析:(1)取线段的中点,连结.可得四边形是平行四边形,,即可证明平面;(2)以为原点,,,所在直线分别为、、轴建立空间直角坐标系,利用向量法二面角的余弦值.试题解析:(1)取线段的中点,连结.∵,∴,且.又为的中点,∴,且.∴,且.∴四边形是平行四边形.∴.又平面平面,∴平面.(2)∵两两垂直,∴以为原点,所在直线分别为轴,轴,轴,建立空间直角坐标系,如图,∵三棱柱中,平面,∴即为直线与平面所成的角.设,则由,得.∴.∴,设平面的一个法向量为,则令,得,即.又平面的一个法向量为,∴,又二面角的平面角为钝角,∴二面角的余弦值为.21、(1)见解析;(2)【解题分析】

(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)记t=lnx+x,通过讨论a的范围,结合函数的单调性以及函数的零点的个数判断a的范围即可.【题目详解】(1)定义域为:,当时,.∴在时为减函数;在时为增函数.(2)记,则在上单增,且.∴.∴在上有两个零点等价于在上有两个零

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论