




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北衡水数学高二第二学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的焦距为,两条渐近线的夹角为,则双曲线的标准方程是()A. B.或C. D.或2.若函数在上单调递增,则实数的取值范围为()A. B. C. D.3.在同一平面直角坐标系中,曲线按变换后的曲线的焦点坐标为()A. B. C. D.4.设数列,()都是等差数列,若,则等于()A.60 B.62 C.63 D.665.已知,则()A.36 B.40 C.45 D.526.设曲线在点处的切线与直线垂直,则()A. B. C.-2 D.27.已知单位向量的夹角为,若,则为()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形8.若存在两个正实数,使得等式成立,其中为自然对数的底数,则实数的取值范围是()A. B. C. D.9.若曲线:与曲线:(其中无理数…)存在公切线,则整数的最值情况为()A.最大值为2,没有最小值 B.最小值为2,没有最大值C.既没有最大值也没有最小值 D.最小值为1,最大值为210.设集合,则的元素的个数为()A. B. C. D.11.己知函数,其中为函数的导数,求()A. B. C. D.12.参数方程(θ∈R)表示的曲线是()A.圆 B.椭圆 C.双曲线 D.抛物线二、填空题:本题共4小题,每小题5分,共20分。13.若实数,满足约束条件,则的最大值是_____.14.已知,且复数是纯虚数,则_______.15.已知直线3x+4y﹣3=0与6x+my+14=0相互平行,则它们之间的距离是_____.16.已知变数满足约束条件目标函数仅在点处取得最大值,则的取值范围为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)观察下列等式:;;;;;(1)猜想第n(n∈N*)个等式;(2)用数学归纳法证明你的猜想.18.(12分)已知正整数,.(1)若的展开式中,各项系数之和比二项式系数之和大992,求的值;(2)若,且是中的最大值,求的值.19.(12分)已知函数f(x)=sin(1)若fx在0,π2(2)若a=1,g(x)=f(x)+ex且gx20.(12分)为了实现绿色发展,避免能源浪费,某市计划对居民用电实行阶梯收费.阶梯电价原则上以住宅(一套住宅为一户)的月用电量为基准定价,具体划分标准如表:阶梯级别第一阶梯电量第二阶梯电量第三阶梯电量月用电量范围(单位:kW⋅h)(0,200](200,400](400,+∞]从本市随机抽取了100户,统计了今年6月份的用电量,这100户中用电量为第一阶梯的有20户,第二阶梯的有60户,第三阶梯的有20户.(1)现从这100户中任意选取2户,求至少1户用电量为第二阶梯的概率;(2)以这100户作为样本估计全市居民的用电情况,从全市随机抽取3户,X表示用电量为第二阶梯的户数,求X的概率分布列和数学期望.21.(12分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:月份x12345y(万盒)44566(1)该同学为了求出关于的线性回归方程,根据表中数据已经正确计算出=0.6,试求出的值,并估计该厂6月份生产的甲胶囊产量数;(2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题,记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.22.(10分)设为正整数,展开式的二项式系数的最大值为,展开式的二项式系数的最大值为,与满足(1)求的值;(2)求的展开式中的系数。
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据题意,有,根据斜率公式求出的值,进而联立组成方程组求出,的值,将其代入双曲线的标准方程即可得出结果.【题目详解】解:根据题意双曲线的焦距为,则双曲线的一个焦点为,则①,双曲线的两条渐近线的夹角为,一条渐近线的斜率为或则或②,联立①、②可得或.则双曲线的标准方程是或.故选:B.【题目点拨】本题考查双曲线的简单几何性质,涉及双曲线的焦点、渐近线的求法,属于中档题.2、D【解题分析】因为,由题设可得在上恒成立,令,则,又,且,故,所以问题转化为不等式在上恒成立,即不等式在上恒成立.令函数,则,应选答案D.点睛:本题的求解过程自始至终贯穿着转化与化归的数学思想,求函数的导数是第一个转化过程,换元是第二个转化过程;构造二次函数是第三个转化过程,也就是说为达到求出参数的取值范围,求解过程中大手笔地进行三次等价的转化与化归,从而使得问题的求解化难为易、化陌生为熟悉、化繁为简,彰显了数学思想的威力.3、D【解题分析】
把伸缩变换的式子变为用表示,再代入原方程即可求出结果.【题目详解】由可得,将其代入可得:,即故其焦点为:.故选:D.【题目点拨】本题考查的是有关伸缩变换后曲线方程的求解问题,涉及到的知识点有伸缩变换规律对应点的坐标之间的关系,属于基础题4、A【解题分析】
设数列的公差为,则由题意可得,求得的值,得到数列的通项公式,即可求解得值,得到答案.【题目详解】由题意,数列,都是等差数列,且,设数列的公差为,则有,即,解得,所以,,所以,故选A.【题目点拨】本题主要考查了等差数列的定义,以及等差数列的通项公式的应用,着重考查了推理与运算能力,属于基础题.5、A【解题分析】
利用二项式展开式的通项公式,分别计算和,相加得到答案.【题目详解】故答案选A【题目点拨】本题考查了二项式的计算,意在考查学生的计算能力.6、A【解题分析】
根据函数的求导运算得到导函数,根据题干所给的垂直关系,得到方程,进而求解.【题目详解】由题意得,,∵在点处的切线与直线垂直,∴,解得,故选:A.【题目点拨】这个题目考查了函数的求导法则,涉及到导数的几何意义的应用,属于基础题.7、C【解题分析】,,与夹角为,且,为直角三角形,故选C.8、D【解题分析】试题分析:由得,即,即设,则,则条件等价为,即有解,设,为增函数,∵,∴当时,,当时,,即当时,函数取得极小值为:,即,若有解,则,即,则或,故选D.考点:函数恒成立问题.【方法点晴】本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键,综合性较强,难度较大根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.9、C【解题分析】分析:先根据公切线求出,再研究函数的最值得解.详解:当a≠0时,显然不满足题意.由得,由得.因为曲线:与曲线:(其中无理数…)存在公切线,设公切线与曲线切于点,与曲线切于点,则将代入得,由得,设当x<2时,,f(x)单调递减,当x>2时,,f(x)单调递增.或a<0.故答案为:C点睛:(1)本题主要考查导数的几何意义,考查利用导数求函数的最值,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是求出,再研究函数的最值得解.10、C【解题分析】分析:分别求出A和B,再利用交集计算即可.详解:,,则,交集中元素的个数是5.故选:C.点睛:本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.11、A【解题分析】
设,判断奇偶性和导数的奇偶性,求和即可得到所求值.【题目详解】解:函数设,则即,即,则,又,,可得,即有,故选:.【题目点拨】本题考查函数的奇偶性和导数的奇偶性,考查运算能力,属于中档题.12、A【解题分析】
利用平方关系式消去参数可得即可得到答案.【题目详解】由可得,所以,化简得.故选:A【题目点拨】本题考查了参数方程化普通方程,考查了平方关系式,考查了圆的标准方程,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、8【解题分析】
画出可行域,将基准直线向下平移到可行域边界位置,由此求得目标函数的最大值.【题目详解】画出可行域如下图所示,由图可知,目标函数在点处取得最大值,且最大值为.【题目点拨】本小题主要考查利用线性规划求目标函数的最大值的方法,属于基础题.14、【解题分析】
由复数的运算法则可得,结合题意得到关于的方程,解方程即可确定实数的值.【题目详解】由复数的运算法则可得:,复数为纯虚数,则:,据此可得:.故答案为.【题目点拨】本题主要考查复数的运算法则,纯虚数的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.15、2【解题分析】
由两直线平行,可先求出参数的值,再由两平行线间距离公式即可求出结果.【题目详解】因为直线,平行,所以,解得,所以即是,由两条平行线间的距离公式可得.故答案为2【题目点拨】本题主要考查两条平行线间的距离,熟记公式即可求解,属于基础题型.16、【解题分析】
试题分析:由题意知满足条件的线性区域如图所示:,点,而目标函数仅在点处取得最大值,所以考点:线性规划、最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)(i)当时,等式显然成立;(ii)见证明;【解题分析】
(1)猜想第个等式为.(2)先验证时等式成立,再假设等式成立,并利用这个假设证明当时命题也成立.【题目详解】(1)猜想第个等式为.(2)证明:①当时,左边,右边,故原等式成立;②设时,有,则当时,故当时,命题也成立,由数学归纳法可以原等式成立.【题目点拨】数学归纳法可用于证明与自然数有关的命题,一般有2个基本的步骤:(1)归纳起点的证明即验证命题成立;(2)归纳证明:即设命题成立并证明时命题也成立,此处的证明必须利用假设,最后给出一般结论.18、(1);(2)或.【解题分析】
(1)令求出的展开式中各项系数和,结合二项式系数和公式,可由题意列出方程,解方程即可求出的值(2)根据数列最大项的定义,可以列出不等式组,解这个不等式组即可求出的值.【题目详解】(1)令,所以的展开式中各项系数和为:,二项式系数和为:,由题意可知:或(舍去),所以;(2)二项式的通项公式为:.因为是中的最大项,所以有:,因此或.【题目点拨】本题考查了二项式系数之和公式和展开式系数之和算法,考查了二项式展开式系数最大值问题,考查了数学运算能力.19、(1)a>0(2)见解析【解题分析】
(1)求出函数y=fx的导数,对实数a分a≤0和a>0两种情况讨论,结合导数的单调性、零点存在定理以及导数符号来判断,于此得出实数a(2)利用分析法进行转化证明,构造新函数Fx=g【题目详解】(1)已知f'当a≤0时,f'(x)≥0,∴f(x)在0,π2上单调递增,此时不存在极大值点;当a>0时,f''(x)=-sinx-a<0,又f'(0)=1>0,f'π2=-π2a<0,故存在唯一x0此时,x0是函数fx综上可得a>0;(2)依题g(x)=ex+∴g(x)=ex+∵g(0)=1,:x欲证x1+x2<0,等价证x令F(x)=g(-x)+g(x)-2=e∵F'(x)=e故x>0时,F'(x)单调递增∴F(x)单调递增,∴F(x)>F(0)=0,得证.【题目点拨】本题主要考查导数的应用,涉及极值点的存在性问题,以及二阶导数的应用,构造函数解决函数不等式的证明,考查函数思想,考查转化与化归数学思想的应用,属于难题。20、(1)P(A)=139165【解题分析】分析:(1)设“从100户中任意抽取2户,至少1户月用电量为第二阶梯”为事件A,利用对立事件可求P(A).(2)从全市任取1户,抽到用电量为第二阶梯的概率P=6则X~B(3,35),即可求出详解:(1)设“从100户中任意抽取2户,至少1户月用电量为第二阶梯”为事件A,则P(A)=1-C(2)从全市任取1户,抽到用电量为第二阶梯的概率P=6所以X~B(3,35)X的分布列为X0123P(X=k)8365427E(X)=3×3点睛:本题考查离散型随机变量分布列及其期望的求法,考查古典概型,属基础题.21、(1),6.1(2)见解析【解题分析】试题分析:(1)由线性回归方程过点(,),可得,再求x=6时对应函数值即为6月份生产的甲胶囊产量数(2)先确定随机变量取法:ξ=0,1,2,3,再利用组合数求对应概率,列表可得分布列,最后根据公式求数学期望试题解析:解:(1)==3,(4+4+5+6+6)=5,因线性回归方程=x+过点(,),∴=﹣=5﹣0.6×3=3.2,∴6月份的生产甲胶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《金融服务营销》 测试题及答案B
- 工业园区绿色发展路径探索
- 工业智能化新材料与物联网的结合
- 工业安全与智能制造成型技术
- 工业控制系统安全技术研究报告
- 工业技术改造项目申报政策分析
- 工业机器人技术的创新与应用研究
- 工业自动化中的智能硬件产品解决方案
- 工业设计中的智能制造成型技术应用探讨
- 工业自动化与智能制造的发展趋势
- 循环经济产业链拓展项目商业计划书
- 校园网络文化建设课件
- 天然气密度计算
- 3地质勘查项目预算标准
- 过程控制课程设计-前馈-反馈控制系统仿真论文
- 【高教版】中职数学拓展模块:31《排列与组合》课件
- 招标代理公司内部监督管理制度
- 达林顿三极管
- 电力电子单相桥式整流电路设计报告
- 正常心电图及常见心律失常心电图的表现
- 主体结构工程验收自评报告
评论
0/150
提交评论