版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省合肥八中、马鞍山二中、阜阳一中高二数学第二学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数Z满足:,则()A. B. C. D.2.从不同品牌的4台“快译通”和不同品牌的5台录音机中任意抽取3台,其中至少有“快译通”和录音机各1台,则不同的取法共有()A.140种 B.84种 C.70种 D.35种3.已知均为实数,若(为虚数单位),则()A.0 B.1 C.2 D.-14.过抛物线的焦点F的直线交抛物线于A、B两点,若,则()A. B.1 C. D.25.已知随机变量,其正态分布曲线如图所示,若向正方形OABC中随机投掷10000个点,则落入阴影部分的点数估计值为()(附:则)A.6038 B.6587 C.7028 D.75396.函数的图象大致为A. B. C. D.7.设函数满足:,,则时,()A.有极大值,无极小值 B.有极小值,无极大值C.既有极大值,又有极小值 D.既无极大值,又无极小值8.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A. B. C. D.9.已知两个不同的平面α,β和两条不同的直线a,b满足a⊄α,b⊄β,则“a∥b”是“α∥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.A. B. C. D.11.在一项调查中有两个变量和,下图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为关于的回归方程的函数类型是()A. B.C. D.()12.一车间为规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,测得的数据如下零件数(个)2345加工时间(分钟)264954根据上表可得回归方程,则实数的值为()A.37.3 B.38 C.39 D.39.5二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量服从二项分布,则__________.14.每次试验的成功率为,重复进行10次试验,其中前6次都未成功,后4次都成功的概率为____________.15.若函数y=fx的图象在x=4处的切线方程是y=-2x+9,则f416.,,,,……则根据以上四个等式,猜想第个等式是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某市一次全市高中男生身高统计调查数据显示:全市10万名男生的身高服从正态分布.现从某学校高中男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和190cm之间,将身高的测量结果按如下方式分成5组:第1组[160,166),第2组[166,172),...,第5组[184,190]下表是按上述分组方法得到的频率分布表:分组[160,166)[166,172)[172,178)[178,184)[184,190]人数31024103这50个数据的平均数和方差分别比10万个数据的平均数和方差多1和6.68,且这50个数据的方差为.(同组中的身高数据用该组区间的中点值作代表):(1)求,;(2)给出正态分布的数据:,.(i)若从这10万名学生中随机抽取1名,求该学生身高在(169,179)的概率;(ii)若从这10万名学生中随机抽取1万名,记为这1万名学生中身高在(169,184)的人数,求的数学期望.18.(12分)已知.(I)求;(II)当,求在上的最值.19.(12分)如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;20.(12分)已知函数,.(1)当时,求不等式的解集;(2)若的解集包含,求实数的取值范围.21.(12分)某市召开全市创建全国文明城市动员大会,会议向全市人民发出动员令,吹响了集结号.为了了解哪些人更关注此活动,某机构随机抽取了年龄在15-75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:,,,,,,把年龄落在和内的人分别称为“青少年人”和“中老年人”.经统计“青少年人”与“中老年人”的人数之比为.(1)求图中,的值,若以每个小区间的中点值代替该区间的平均值,估计这100人年龄的平均值;(2)若“青少年人”中有15人关注此活动,根据已知条件完成题中的列联表,根据此统计结果,问能否有99.9%的把握认为“中老年人”比“青少年人”更加关注此活动?关注不关注合计青少年人15中老年人合计5050100附参考公式及参考数据:,其中.0.0500.0100.0013.8416.63510.82822.(10分)已知等比数列的前项和,其中为常数.(1)求;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由复数的四则运算法则求出复数,由复数模的计算公式即可得到答案.【题目详解】因为,则,所以,故选B.【题目点拨】本题考查复数的化简以及复数模的计算公式,属于基础题.2、C【解题分析】分析:从中任意取出三台,其中至少要有“快译通”和录音机各1台,有两种方法,一是2台和1台;二是1台和2台,分别求出取出的方法,即可求出所有的方法数.详解:由题意知本题是一个计数原理的应用,从中任意取出三台,其中至少要有“快译通”和录音机各1台,快译通2台和录音机1台,取法有种;快译通1台和录音机2台,取法有种,根据分类计数原理知共有种.故选:C.点睛:本题考查计数原理的应用,考查分类和分步的综合应用,本题解题的关键是看出符合条件的事件包含两种情况,是一个中档题目.3、C【解题分析】
将已知等式整理为,根据复数相等可求得结果.【题目详解】由题意得:,即:则:本题正确选项:【题目点拨】本题考查复数相等的定义,涉及简单的复数运算,属于基础题.4、C【解题分析】
根据抛物线的定义,结合,求出A的坐标,然后求出AF的方程求出B点的横坐标即可得到结论.【题目详解】抛物线的焦点F(1,0),准线方程为,设A(x,y),则,故x=4,此时y=4,即A(4,4),则直线AF的方程为,即,代入得,解得x=4(舍)或,则,故选:C.【题目点拨】本题主要考查抛物线的弦长的计算,根据抛物线的定义是解决本题的关键.一般和抛物线有关的小题,可以应用结论来处理;平时练习时应多注意抛物线的结论的总结和应用。尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化。5、B【解题分析】∵随机变量,∴,∴,∴落入阴影部分的点的个数的估计值为个.选B.6、B【解题分析】由于,故排除选项.,所以函数为奇函数,图象关于原点对称,排除选项.,排除选项,故选B.7、B【解题分析】
首先构造函数,由已知得,从而有,令,求得,这样可确定是增函数,由可得的正负,确定的单调性与极值.【题目详解】,令,则,所以,令,则,即,当时,,单调递增,而,所以当时,,,单调递减;当时,,,单调递增;故有极小值,无极大值,故选B.【题目点拨】本题考查用导数研究函数的极值,解题关键是构造新函数,,求导后表示出,然后再一次令,确定单调性,确定正负,得出结论.8、B【解题分析】
由y=f′(x)的图象知,y=f(x)的图象为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢.故选B.9、D【解题分析】
分别判断充分性和必要性得到答案.【题目详解】如图所示:既不充分也不必要条件.故答案选D【题目点拨】本题考查了充分必要条件,举出反例可以简化运算.10、D【解题分析】分析:根据公式,可直接计算得详解:,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.11、B【解题分析】
根据散点图的趋势,选定正确的选项.【题目详解】散点图呈曲线,排除A选项,且增长速度变慢,排除选项C、D,故选B.【题目点拨】本小题主要考查散点图,考查回归直线方程等知识,属于基础题.12、C【解题分析】
求出,代入回归方程,即可得到实数的值。【题目详解】根据题意可得:,,根据回归方程过中心点可得:,解得:;故答案选C【题目点拨】本题主要考查线性回归方程中参数的求法,熟练掌握回归方程过中心点是关键,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
直接利用二项分布公式得到答案.【题目详解】随机变量服从二项分布,则故答案为:【题目点拨】本题考查了二项分布的计算,属于简单题目.14、【解题分析】每次试验的成功率为,重复进行10次试验,其中前6次都未成功,后4次都成功,所以所求的概率为.故答案为:.15、3【解题分析】∵函数y=fx的图象在x=4处的切线方程是∴f'∴f故答案为3点睛:高考对导数几何意义的考查主要有以下几个命题角度:(1)已知切点求切线方程;(2)已知切线方程(或斜率)求切点或曲线方程;(3)已知曲线求切线倾斜角的取值范围.16、.【解题分析】分析:根据已知的四个等式知;等式左边自然对数的指数都是从开始,连续个正整数的和,右边都是.详解:,,,,……由上边的式子,我们可以发现:等式左边自然对数的指数都是从开始,连续个正整数的和,右边都是,可猜想,.故答案为.点睛:本题通过观察几组等式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)=174;;(2)(i)0.6826;(ii)8185【解题分析】
(1)由每组的中间值乘以该组的人数,再求和,最后除以总人数,即可求出平均值,根据题意即可得到,再由,以及题中条件,即可得出;(2)(i)先由题意得(169,179)=(,),根据题中所给数据,即可求出对应概率;(ii)由题意可知(169,184)=(,),,先求出一名学生身高在(169,184)的概率,由题意可知服从二项分布,再由二项分布的期望,即可求出结果.【题目详解】解:(1)根据频率分布表中的数据可以得出这50个数据的平均数为所以,又=31.68,所以.(2)(i)由题意可知(169,179)=(,),所以该学生身高在(169,179)的概率为p=0.6826(ii)由题意可知(169,184)=(,),所以一名学生身高在(169,184)的概率为根据题意,所以的数学期望.【题目点拨】本题主要考查平均值与标准差的计算,正态分布特殊区间的概率,以及二项分布的期望问题,熟记公式即可,属于常考题型.18、(1).(2),.【解题分析】分析:(1)对函数求导,指接代入x=1即可;(2)将参数值代入,对函数求导,研究函数的单调性得到最值.详解:(1)(2)解:当时,令即解得:或是得极值点因为不在所求范围内,故舍去,点睛:这个题目考查的是函数单调性的研究和函数值域.研究函数单调性的方法有:定义法,求导法,复合函数单调性的判断方法,即同增异减,其中前两种方法也可以用于证明单调性,在解决函数问题时需要格外注意函数的定义域.19、(1)见解析;(2)见解析;【解题分析】
(1)要证BD⊥平面PAC,只需在平面PAC上找到两条直线跟BD垂直即证,显然,从平面中可证,即证.(2)要证明平面PAB⊥平面PAE,可证平面即可.【题目详解】(1)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(2)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.【题目点拨】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.20、(1).(2).【解题分析】
(1)利用分类讨论法解绝对值不等式;(2)等价转化为对任意的,恒成立,即对任意的,恒成立,再解不等式得解.【题目详解】(1)当时,.①当时,原不等式可化为,化简得,解得,∴;②当时,原不等式可化为,化简得,解得,∴;③当时,原不等式可化为,化简得,解得,∴;综上所述,不等式的解集是;(2)由题意知,对任意的,恒成立,即对任意的,恒成立,∵当时,,∴对任意的,恒成立,∵,,∴,∴,即实数的取值范围为.【题目点拨】本题主要考查分类讨论法解绝对值不等式,考查绝对值三角不等式的应用和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(1);100人年龄的平均值为.(2)表格数据为:25,40,35,25,60;没有9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专用建筑工具租赁合同
- 2024年建筑工程施工物资合同
- 2024年商业店铺联合租赁合同
- 2024年度加工承揽合同承揽工作内容及要求
- 【初中生物】脊椎动物-鸟和哺乳动物课件-2024-2025学年人教版(2024)生物七年级上册
- 2024年定制版:物流运输居间协议
- 2024年在线教育平台建设及内容提供合同
- 2024国际货运代理服务合同及附加条款
- 2024年废弃物处理与回收合同处理方法与环保标准
- 2024年北京市出租车指标承包经营协议
- 《长相思》 完整版课件
- 作品赏析:《雷雨》集中尖锐的矛盾冲突
- (完整word版)高考英语作文练习纸(标准答题卡)
- 《山西省建设工程计价依据》(2018)定额调整
- 电镀废水处理工程加药计算方法
- 絮凝搅拌机操作规程
- 高考文言文阅读模拟训练:苏轼《晁错论》(附答案解析与译文)
- 小学数学 三年级上《去游乐园》教学设计
- 小学综合实践活动-我做急救小医生教学设计学情分析教材分析课后反思
- 高中数学必修二 第六章 知识总结及测试(无答案)
- DB13T 5387-2021 水库库容曲线修测及特征值复核修正技术导则
评论
0/150
提交评论