广西南宁市马山县金伦中学、华侨、新桥、罗圩中学2024届高二数学第二学期期末检测试题含解析_第1页
广西南宁市马山县金伦中学、华侨、新桥、罗圩中学2024届高二数学第二学期期末检测试题含解析_第2页
广西南宁市马山县金伦中学、华侨、新桥、罗圩中学2024届高二数学第二学期期末检测试题含解析_第3页
广西南宁市马山县金伦中学、华侨、新桥、罗圩中学2024届高二数学第二学期期末检测试题含解析_第4页
广西南宁市马山县金伦中学、华侨、新桥、罗圩中学2024届高二数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西南宁市马山县金伦中学、华侨、新桥、罗圩中学2024届高二数学第二学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在上是增函数,则实数的取值范围是()A. B. C. D.2.设随机变量服从正态分布,若,则实数等于()A. B. C. D.3.已知曲线的参数方程为:,且点在曲线上,则的取值范围是()A. B. C. D.4.已知等差数列中,,则()A.20 B.30 C.40 D.505.曲线在处的切线斜率是()A. B. C. D.6.执行如图所示的程序框图,若输入的值为,则输出的的值为()A. B. C. D.7.正方体中,若外接圆半径为,则该正方体外接球的表面积为()A. B. C. D.8.已知,是第四象限角,则()A. B. C. D.79.已知,,则A. B. C. D.10.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有()A.种 B.种 C.种 D.种11.已知,,则“”是“表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,分别为63,98,则输出的()A.9 B.3 C.7 D.14二、填空题:本题共4小题,每小题5分,共20分。13.若随机变量的分布列如表所示,则______.01Pa14.《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷“物不知数”中有如下问题:“今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?”其意思为:“现有一堆物品,不知它的数目.3个3个数,剩2个;5个5个数,剩3个;7个7个数,剩2个.问这堆物品共有多少个?”试计算这堆物品至少有__________个.15.若的展开式中常数项为96,则实数等于__________.16.已知复数满足(是虚数单位),则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆长轴右端点为,上顶点为,为椭圆中心,为椭圆的右焦点,且,离心率为.(1)求椭圆的标准方程;(2)直线交椭圆于、两点,判断是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.18.(12分)已知函数的图象过点.(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若函数,则是否存在实数,使得函数的最大值为?若存在,求出的值;若不存在,请说明理由.19.(12分)在复平面内,复数(其中).(1)若复数为实数,求的值;(2)若复数为纯虚数,求的值;(3)对应的点在第四象限,求实数的取值范围.20.(12分)已知函数,.(1)若曲线与曲线在点处的切线方程相同,求实数的值;(2)若恒成立,求证:当时,.21.(12分)甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响且无平局.求:(1)前三局比赛甲队领先的概率;(2)设本场比赛的局数为,求的概率分布和数学期望.(用分数表示)22.(10分)如图所示的几何,底为菱形,,.平面底面,,,.(1)证明:平面平面;(2)求二面角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

由题意得在上恒成立,利用分离参数思想即可得出结果.【题目详解】∵,∴,又∵函数在上是增函数,∴在恒成立,即恒成立,可得,故选D.【题目点拨】本题主要考查了已知函数的单调性求参数的取值范围,属于中档题.2、B【解题分析】分析:根据随机变量符合正态分布,又知正态曲线关于x=4对称,得到两个概率相等的区间关于x=4对称,得到关于a的方程,解方程即可.详解:∵随机变量ξ服从正态分布N(4,3),∵P(ξ<a﹣5)=P(ξ>a+1),∴x=a﹣5与x=a+1关于x=4对称,∴a﹣5+a+1=8,∴2a=12,∴a=6,故选:C.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.3、C【解题分析】分析:由题意得曲线C是半圆,借助已知动点在单位圆上任意动,而所求式子,的形式可以联想成在单位圆上动点P与点C(0,1)构成的直线的斜率,进而求解.详解:∵即

其中由题意作出图形,,

令,则可看作圆上的动点到点的连线的斜率而相切时的斜率,

由于此时直线与圆相切,

在直角三角形中,,由图形知,的取值范围是则的取值范围是.

故选C.点睛:此题重点考查了已知两点坐标写斜率,及直线与圆的相切与相交的关系,还考查了利用几何思想解决代数式子的等价转化的思想.4、A【解题分析】等差数列中,,,.故选A.5、C【解题分析】

根据已知对求导,将代入导函数即可.【题目详解】∵y′=(cosx)′=-sinx,∴当时,.故选C.【题目点拨】本题考查利用导数求切线斜率问题,已知切点求切线斜率问题,先求导再代入切点横坐标即可,属于基础题.6、B【解题分析】开始运行,,满足条件,,;第二次运行,,满足条件,s=1+1=1.i=3;第三次运行,,满足条件,,;第四次运行,,满足条件,,;第五次运行,,满足条件,,;第六次运行,,满足条件,,,不满足条件,程序终止,输出,故选B.7、C【解题分析】

设正方体的棱长为,则是边长为的正三角形,求得其外接圆的半径,求得的值,进而求得球的半径,即可求解球的表面积,得到答案.【题目详解】如图所示,设正方体的棱长为,则是边长为的正三角形,设其外接圆的半径为,则,即,由,得,所以正方体的外接球的半径为,所以正方体的外接球的表面积为,故选C.【题目点拨】本题主要考查了求得表面积与体积的计算问题,同时考查了组合体及球的性质的应用,其中解答中根据几何体的结构特征,利用球的性质,求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于基础题.8、A【解题分析】

通过和差公式变形,然后可直接得到答案.【题目详解】根据题意,是第四象限角,故,而,故答案为A.【题目点拨】本题主要考查和差公式的运用,难度不大.9、A【解题分析】,故选A.10、C【解题分析】

根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果.【题目详解】根据题意,分2步进行分析:①.从3件次品中抽取2件次品,有种抽取方法,;②.从7件正品中抽取3件正品,有种抽取方法,则抽取的5件产品中恰好有2件次品的抽法有种;故选:C.【题目点拨】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列.11、B【解题分析】

先要理解椭圆方程的基本形式,再利用两个命题的关系即可得出必要不充分.【题目详解】当且时,表示圆,充分性不成立;当表示椭圆时,且,必要性成立,所以“”是“表示椭圆”的必要不充分条件,故选B.【题目点拨】本题考查了椭圆方程的基本形式,以及命题之间的关系.12、C【解题分析】由,不满足,则变为,由,则变为,由,则,由,则,由,则,由,则,由,退出循环,则输出的值为,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先由分布列,根据概率的性质求出,再求出期望,根据方差的计算公式,即可得出结果.【题目详解】由分布列可得:,解得,所以,因此,所以.故答案为:.【题目点拨】本题主要考查求离散型随机变量的方差,熟记计算公式即可,属于常考题型.14、23【解题分析】除以余且除以余的数是除以余的数.和的最小公倍数是.的倍数有除以余且除以余的数有,…其中除以余的数最小数为,这些东西有个,故答案为.【方法点睛】本题主要考查阅读能力及建模能力,属于难题.弘扬传统文化与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过中国古代数学名著及现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.15、【解题分析】的展开式的通项是,令,的展开式中常数项为可得故答案为.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.16、【解题分析】

利用复数的除法运算化简,进而求得.【题目详解】依题意,故故答案为:.【题目点拨】本小题主要考查复数除法运算,考查复数的模的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在直线:满足要求.【解题分析】

(1)由条件布列关于a,b的方程组,即可得到椭圆的标准方程;(2)由为的垂心可知,利用韦达定理表示此条件即可得到结果.【题目详解】解:(1)设椭圆的方程为,半焦距为.则、、、、由,即,又,解得,椭圆的方程为(2)为的垂心,又,,设直线:,,将直线方程代入,得,,且又,,,即由韦达定理得:解之得:或(舍去)存在直线:使为的垂心.【题目点拨】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、三角形垂心的性质、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.18、(1),值域为(2)(3)【解题分析】试题分析:(1)根据在图象上,代入计算即可求解,因为,所以,所以,可得函数的值域为;(2)原方程等价于的图象与直线有交点,先证明的单调性,可得到的值域,从而可得实数的取值范围;(3)根据,,转化为二次函数最大值问题,讨论函数的最大值,求解实数即可.试题解析:(1)因为函数的图象过点,所以,即,所以,所以,因为,所以,所以,所以函数的值域为.(2)因为关于的方程有实根,即方程有实根,即函数与函数有交点,令,则函数的图象与直线有交点,又任取,则,所以,所以,所以,所以在R上是减函数(或由复合函数判断为单调递减),因为,所以,所以实数的取值范围是.(3)由题意知,,令,则,当时,,所以,当时,,所以(舍去),综上,存在使得函数的最大值为0.19、(1)或4;(2);(3)【解题分析】

(1)根据复数为实数条件列方程解得结果,(2)根据纯虚数定义列式求解,(3)根据复数几何意义列不等式解得结果【题目详解】(1)因为复数为实数,所以,所以或4;(2)因为复数为纯虚数,所以,所以(3)因为对应的点在第四象限,所以解不等式组得,,即的取值范围是.【题目点拨】本题考查复数相关概念以及复数几何意义,考查基本分析求解能力,属基础题.20、(1),.(2)答案见解析。【解题分析】试题分析:(1)由题意得到关于实数a,b的方程组,求解方程组可得,.(2)由题意结合恒成立的结论分类讨论即可证得题中的结论.试题解析:(1)由,.得,解得,.(2)证明:设,则,①当时,,函数在上单调递增,不满足恒成立.②当时,令,由,得,或(舍去),设,知函数在上单调递减,在上单调递增,故,即,得.又由,得,所以,令,.当时,,函数单调慈善当时,,函数单调递增;所以,即,故当时,得.21、(1);(2)详见解析.【解题分析】

(1)分为甲队胜三局和甲队胜二局两种情况,概率相加得到答案.(2)本场比赛的局数为有3,4,5三种情况,分别计算概率得到分布列,最后计算得到答案.【题目详解】解:(1)设“甲队胜三局”为事件,“甲队胜二局”为事件,则,,所以,前三局比赛甲队领先的概率为(2)甲队胜三局或乙胜三局,甲队或乙队前三局胜局,第局获胜甲队或乙队前四局胜局,第局获胜的分部列为:数学期望为【题目点拨】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和解决问题的能力.22、(1)证明见解析;(2)【解题分析】

(1)推导出,从而平面,进而.再由,得平面,推导出,从而平面,由此能证明平面平面;

(2)取中点G,从而平面,以、、所在直线分别为x轴、y轴、z轴的正方向建立如图所示的空间直角坐标系,利用向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论