版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省宜昌市协作体数学高二下期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A.这半年中,网民对该关键词相关的信息关注度呈周期性变化B.这半年中,网民对该关键词相关的信息关注度不断减弱C.从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D.从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值2.已知是等比数列的前n项和,且是与的等差中项,则()A.成等差数列 B.成等差数列C.成等差数列 D.成等差数列3.已知,若,则的值为()A. B. C. D.4.若函数,则()A. B. C. D.5.已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=116x2(0≤x≤2)(12)x(x>2),若关于x的方程[f(xA.(-∞,-C.(-126.函数的单调递减区间是()A. B. C., D.,7.不等式x-1>4A.xx<-3 B.xx>58.若圆锥的高为,底面半径为,则此圆锥的表面积为()A. B. C. D.9.“,”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.在同一平面直角坐标系中,曲线按变换后的曲线的焦点坐标为()A. B. C. D.11.若复数,则()A. B. C. D.12.一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为()A.4 B.8 C.16 D.24二、填空题:本题共4小题,每小题5分,共20分。13.将一个总体分为A、B、C三层,其个体数之比为5:3:2,若用分层抽样方法抽取容量为100的样本,则应从C中抽取_________个个体.14.若函数为奇函数,则的取值范围为__________.15.如图,在正方体中,与所成角的大小为________.16.已知函数,若,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2019年某地初中毕业升学体育考试规定:考生必须参加长跑.掷实心球.1分钟跳绳三项测试,三项测试各项20分,满分60分.某学校在初三上学期开始时,为掌握全年级学生1分钟跳绳情况,按照男女比例利用分层抽样抽取了100名学生进行测试,其中女生54人,得到下面的频率分布直方图,计分规则如表1:(1)规定:学生1分钟跳绳得分20分为优秀,在抽取的100名学生中,男生跳绳个数大等于185个的有28人,根据已知条件完成表2,并根据这100名学生测试成绩,能否有99%的把握认为学生1分钟跳绳成绩优秀与性别有关?附:参考公式临界值表:(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步.假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,全年级恰有2000名学生,所有学生的跳绳个数X服从正态分布N(μ,σ2)(用样本数据的平值和方差估计总体的期望和方差,各组数据用中点值代替)①估计正式测试时,1分钟跳182个以上的人数(结果四舍五入到整数);②若在全年级所有学生中任意选取3人,正式测试时1分钟跳195个以上的人数为ξ,求ξ占的分布列及期望.18.(12分)已知函数在处取得极值.确定a的值;若,讨论的单调性.19.(12分)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为ρcos=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.20.(12分)如图所示,在四棱锥中,平面,,,是的中点,是上的点,且,为中边上的高.(1)证明:平面;(2)若,,,求三棱锥的体积.21.(12分)近期,某公交公司与银行开展云闪付乘车支付活动,吸引了众多乘客使用这种支付方式.某线路公交车准备用20天时间开展推广活动,他们组织有关工作人员,对活动的前七天使用云闪付支付的人次数据做了初步处理,设第x天使用云闪付支付的人次为y,得到如图所示的散点图.由统计图表可知,可用函数y=a•bx拟合y与x的关系(1)求y关于x的回归方程;(2)预测推广期内第几天起使用云闪付支付的人次将超过10000人次.附:①参考数据xi2xiyixivi43602.301401471071.40表中vi=lgyi,lgyi②参考公式:对于一组数据(u1,v1),(u2,v2)…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β,α.22.(10分)在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.(1)当时,求及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
选项A错,并无周期变化,选项B错,并不是不断减弱,中间有增强.C选项错,10月的波动大小11月分,所以方差要大.D选项对,由图可知,12月起到1月份有下降的趋势,所以去年12月份的平均值大于今年1月份的平均值.选D.2、B【解题分析】
由于是与的等差中项,得到,分,两种情况讨论,用等比数列的前n项和公式代入,得到,即,故得解.【题目详解】由于是与的等差中项,故由于等比数列,若:,矛盾;若:,即成等差数列故选:B【题目点拨】本题考查了等差、等比数列综合,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.3、B【解题分析】
分析:由定积分的几何意义求得定积分,在二项展开式中令可求解.详解:由积分的几何意义知,在中,,令,则,∴.故选B.点睛:本题考查定积分的几何意义,考查二项式定理的应用.在二项展开式中求与系数和有关的问题通常用赋值法.根据所求和式的结构对变量赋予不同的值可得对应的恒等式.如本题赋值,如果只求系数和,则赋值等等.4、A【解题分析】
首先计算,然后再计算的值.【题目详解】,.故选A.【题目点拨】本题考查了分段函数求值,属于计算题型.5、B【解题分析】
根据题意,由函数f(x)的解析式以及奇偶性分析可得f(x)的最小值与极大值,要使关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且只有6个不同实数根,转化为t2+at+b=0必有两个根【题目详解】根据题意,当x≥0时,f(x)=1f(x)在(0,2)上递增,在(2,+∞)上递减,当x=2时,函数当x=0时,函数f(x)取得最小值0,又由函数为偶函数,则f(x)在(-∞,-2)上递增,在当x=-2时,函数f(x)取得极大值14当x=0时,函数f(x)取得最小值0,要使关于x的方程[f(x)]设t=f(x),则t2+at+b=0必有两个根t1且必有t1=14,y=0<t2<14,y关于x的方程[f(x)]可得1又由-a=t则有-12<a<-【题目点拨】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数y=f(x)-g(x)的零点⇔函数y=f(x)-g(x)在x轴的交点⇔方程f(x)-g(x)=0的根⇔函数y=f(x)与y=g(x)的交点.6、A【解题分析】
函数的单调减区间就是函数的导数小于零的区间,可以求出函数的定义域,再算出函数的导数,最后解不等式,可得出函数的单调减区间.【题目详解】解:因为函数,所以函数的定义域为,求出函数的导数:,;令,,解得,所以函数的单调减区间为故选:.【题目点拨】本题考查了利用导数研究函数的单调性,属于简单题,在做题时应该避免忽略函数的定义域而导致的错误.7、C【解题分析】
不等式x-1>4等价于x-1<-4或x-1>4【题目详解】x-1>4⇔x-1>4或x-1<-4⇔x>5或x<-3,故选:C【题目点拨】本题考查绝对值不等式的解法,考查绝对值不等式的等价条件的应用,属于基础题。8、B【解题分析】
根据圆锥的高和底面半径求出母线长,分别求出圆锥侧面积和底面积,加和得到结果.【题目详解】由题意可得圆锥的母线长为:圆锥侧面积为:;底面积为:圆锥表面积为:本题正确选项:【题目点拨】本题考查圆锥表面积的求解,关键是熟练掌握圆锥侧面积公式,属于基础题.9、A【解题分析】
利用充分条件和必要条件的定义进行判断即可.【题目详解】若,则必有.若,则或.所以是的充分不必要条件.故选:A.【题目点拨】本题主要考查充分条件和必要条件的定义和判断.10、D【解题分析】
把伸缩变换的式子变为用表示,再代入原方程即可求出结果.【题目详解】由可得,将其代入可得:,即故其焦点为:.故选:D.【题目点拨】本题考查的是有关伸缩变换后曲线方程的求解问题,涉及到的知识点有伸缩变换规律对应点的坐标之间的关系,属于基础题11、C【解题分析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则可得:.本题选择C选项.点睛:本题主要考查复数的运算法则等知识,意在考查学生的转化能力和计算求解能力.12、B【解题分析】
根据三视图知,三棱锥的一条长为6的侧棱与底面垂直,底面是直角边为2、4的直角三角形,利用棱锥的体积公式计算即可.【题目详解】由三视图知三棱锥的侧棱与底垂直,其直观图如图,可得其俯视图是直角三角形,直角边长为2,4,,棱锥的体积,故选B.【题目点拨】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.二、填空题:本题共4小题,每小题5分,共20分。13、1.【解题分析】解:∵A、B、C三层,个体数之比为5:3:2.又有总体中每个个体被抽到的概率相等,∴分层抽样应从C中抽取100×=1.故答案为1.14、【解题分析】分析:中,,由在定义域内是一个偶函数,,知为奇函数,由此能求出的取值范围.详解:中,,,在定义域内是一个偶函数,,要使函数为奇函数,则为奇函数,①当时,;②当时,;③当时,.只有定义域为的子区间,且定义域关于0对称,才是奇函数,,即,.故答案为:.点睛:本题考查函数的奇偶性的应用,解题时要认真审题,仔细解答,注意分类讨论思想的灵活应用.15、【解题分析】
记点正上方的顶点为,在正方体中,得到即是与所成的角,进而可得出结果.【题目详解】如图,记点正上方的顶点为,在正方体中,显然,所以即是与所成的角,易得:故答案:【题目点拨】本题主要考查异面直线所成的角,在几何体中作出异面直线所成的角,即可求解,属于常考题型.16、【解题分析】
根据题意,求得,解不等式即可求得结果.【题目详解】容易知,故可得,故等价于,解得.故答案为:.【题目点拨】本题考查分段函数函数值的求解,涉及二次不等式的求解,属综合基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不能有的把握认为认为学生1分钟跳绳成绩优秀与性别有关;(2)①,②分布列见解析,期望值为.【解题分析】
(1)根据题目所给数据填写好联表,通过计算出,由此判断不能有99%的把握认为认为学生分钟跳绳成绩优秀与性别有关.(2)根据频率分布计算出平均数和方差,由此求得正态分布,计算出的概率,进而估计出个以上的人数.利用二项分布概率计算公式计算出概率,由此求得分布列和数学期望.【题目详解】(1)表2如下图所示:由公式可得因为所以不能有99%的把握认为认为学生1分钟跳绳成绩优秀与性别有关.(2)①而,故服从正态分布,故正式测试时,1分钟跳182个以上的人数约为1683人.②,服从的分布列为:0123P【题目点拨】本小题主要考查列联表独立性检验,考查正态分布均值和方差的计算,考查二项分布分布列和数学期望的求法,属于中档题.18、(1)(2)在和内为减函数,在和内为增函数.【解题分析】(1)对求导得,因为在处取得极值,所以,即,解得;(2)由(1)得,,故,令,解得或,当时,,故为减函数,当时,,故为增函数,当时,,故为减函数,当时,,故为增函数,综上所知:和是函数单调减区间,和是函数的单调增区间.19、(1),;(2)相交.【解题分析】
(Ⅰ)由点在直线上,可得所以直线的方程可化为从而直线的直角坐标方程为(Ⅱ)由已知得圆的直角坐标方程为所以圆心为,半径以为圆心到直线的距离,所以直线与圆相交20、(1)证明见解析;(2).【解题分析】
(1)通过证明,证得线面垂直;(2)求出点到平面的距离,利用锥体体积公式即可得解.【题目详解】(1)因为平面,平面,所以,又因为为中边上的高,所以,,平面,平面,所以平面.(2),因为是中点,平面,所以点到平面的距离为,于是.【题目点拨】此题考查证明线面垂直和求锥体的体积,关键在于熟练掌握线面垂直的判定定理,准确求出点到平面的距离,根据公式计算得解.21、(1)y=100.2x+1.1;(2)预测推广期内第11天起使用云闪付支付的人次将超过10000人次【解题分析】
(1)先对y=a•bx两边同取以10为底的对数,得到v=xlgb+lga,再根据斜率和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隧道施工消防安全演练方案
- 采矿权转让合同的谈判技巧
- 村庄土培房拆除合同(2篇)
- 电力管道工程竣工验收方案
- 建筑工程施工设计方案及安全措施方案
- 医院急救药品采购管理制度
- 工程施工合同(2篇)
- 运动中心塑胶跑道施工流程方案
- 浅析如何在自主学习课堂中渗透化学核心素养
- 学生矛盾处理协议书(2篇)
- 北京市道德与法治初一上学期期中试卷及答案指导(2024年)
- 高校实验室安全基础学习通超星期末考试答案章节答案2024年
- 四川省绵阳市高中2025届高三一诊考试物理试卷含解析
- 第五章 种内与种间关系
- 飞利浦16排螺旋CT机操作规程(1)
- 油菜品种田间记载项目与标准
- 渣土车辆驾驶员管理制度
- 德力西系列变频器说明书
- 后疫情时代探索家校共育新模式维护学生心理健康
- 小学美术11-身边的伙伴ppt课件
- 铁合金生产工艺
评论
0/150
提交评论