版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长郡中学、雅礼中学等四校2024届数学高二下期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设命题:,;命题:若,则,则下列命题为真命题的是()A. B. C. D.2.设函数为自然对数的底数)在上单调递增,则实数的取值范围为()A. B. C. D.3.只用四个数字组成一个五位数,规定这四个数字必须同时使用,且同一数字不能相邻出现,这样的五位数有()A. B. C. D.4.设等差数列{an}满足3a8=5a15,且A.S23 B.S24 C.S5.正方形ABCD中,点E是DC的中点,点F是BC的一个三等分点,那么()A. B.C. D..6.抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线,弦过焦点,为阿基米德三角形,则的面积的最小值为()A. B. C. D.7.下列说法中,正确说法的个数是()①在用列联表分析两个分类变量与之间的关系时,随机变量的观测值越大,说明“与有关系”的可信度越大②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和0.3③已知两个变量具有线性相关关系,其回归直线方程为,若,,则A.0 B.1 C.2 D.38.若函数f(x)=2x+12xA.(-∞,-1) B.(C.(0,1) D.(1,+∞)9.已知函数是定义在上的奇函数,若对于任意的实数,都有,且当时,,则的值为()A.-1 B.-2 C.2 D.110.设是服从二项分布的随机变量,又,,则与的值分别为(
)A., B., C., D.,11.已知展开式中项的系数为5,则=()A. B.π C.2π D.4π12.函数的最小正周期为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随机变量X的分布列是123P0.40.20.4则EX,DX分别是________14.设是定义在上的周期为2的函数,当时,则__________.15.从四棱锥的八条棱中随机选取两条,则这两条棱所在的直线为异面直线的概率是______.16.已知函数有六个不同零点,且所有零点之和为3,则的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)各项均为正数的数列的首项,前项和为,且.(1)求的通项公式:(2)若数列满足,求的前项和.18.(12分)某公司生产一种产品,每年投入固定成本万元.此外,每生产件这种产品还需要增加投入万元.经测算,市场对该产品的年需求量为件,且当出售的这种产品的数量为(单位:百件)时,销售所得的收入约为(万元).(1)若该公司这种产品的年产量为(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量的函数;(2)当该公司的年产量为多少时,当年所得利润最大?最大为多少?19.(12分)已知函数,.(Ⅰ)当时,求函数的单调区间;(Ⅱ)当时,若函数在上有两个不同的零点,求的取值范围.20.(12分)若二面角的平面角是直角,我们称平面垂直于平面,记作.(1)如图,已知,,,且,求证:;(2)如图,在长方形中,,,将长方形沿对角线翻折,使平面平面,求此时直线与平面所成角的大小.21.(12分)选修4-5:不等式选讲设函数.(Ⅰ)若不等式的解集是,求实数的值;(Ⅱ)若对一切恒成立,求实数的取值范围.22.(10分)已知函数.(1)当时,解不等式;(2)若存在实数解,求实数a取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:先判断命题的真假,进而根据复合命题真假的真值表,可得结论.详解:因为成立,所以,不存在,,故命题为假命题,为真命题;当时,成立,但不成立,故命题为假命题,为真命题;故命题均为假命题,命题为真命题,故选D.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查不等式的性质以及特称命题的定义,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.2、D【解题分析】
根据单调性与导数的关系,有在上恒成立,将恒成立问题转化成最值问题,利用导数,研究的单调性,求出最小值,即可得到实数的取值范围。【题目详解】依题意得,在上恒成立,即在上恒成立,设,令,,,所以,,,故选D。【题目点拨】本题主要考查函数单调性与导数的关系,将函数在某区间单调转化为导数或者的恒成立问题,再将其转化为最值问题,是解决此类问题的常规思路。3、B【解题分析】
以重复使用的数字为数字为例,采用插空法可确定符合题意的五位数的个数;重复使用每个数字的五位数个数一样多,通过倍数关系求得结果.【题目详解】当重复使用的数字为数字时,符合题意的五位数共有:个当重复使用的数字为时,与重复使用的数字为情况相同满足题意的五位数共有:个本题正确选项:【题目点拨】本题考查排列组合知识的综合应用,关键是能够明确不相邻的问题采用插空法的方式来进行求解;易错点是在插空时,忽略数字相同时无顺序问题,从而错误的选择排列来进行求解.4、C【解题分析】因a8=a1+7d,a15=a1+14d,故由题设3a8=5a155、D【解题分析】
用向量的加法和数乘法则运算。【题目详解】由题意:点E是DC的中点,点F是BC的一个三等分点,∴。故选:D。【题目点拨】本题考查向量的线性运算,解题时可根据加法法则,从向量的起点到终点,然后结合向量的数乘运算即可得。6、B【解题分析】
利用导数的知识,可得,即三角形为直角三角形,利用基本不等式,可得当直线垂直轴时,面积取得最小值.【题目详解】设,过A,B的切线交于Q,直线的方程为:,把直线的方程代入得:,所以,则,由导数的知识得:,所以,所以,所以,因为,当时,可得的最大值为,故选B.【题目点拨】本题是一道与数学文化有关的试题,如果能灵活运用阿基米德三角形的结论,即当直线过抛物线的焦点,则切线与切线互相垂直,能使运算量变得更小.7、D【解题分析】
①分类变量与的随机变量越大,说明“A与B有关系”的可信度越大②对同取对数,再进行化简,可进行判断③根据线性回归方程,将,代入可求出值【题目详解】对于①,分类变量A与B的随机变量越大,说明“A与B有关系”的可信度越大,正确;
对于②,,两边取对数,可得,
令,可得,.即②正确;
对于③,根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中,,,则.故
③正确因此,本题正确答案是:①②③答案选D【题目点拨】二联表中越大,说明“A与B有关系”的可信度越大;将变量转化成一般线性方程时,可根据系数对应关系对号入座进行求解;线性回归方程的求解可根据,代入求出值8、C【解题分析】
由f(x)为奇函数,根据奇函数的定义可求a,代入即可求解不等式.【题目详解】∵f(x)=2x∴f(﹣x)=﹣f(x)即2整理可得,1+∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=2∵f(x))=2x∴2x+12整理可得,2x∴1<2x<2解可得,0<x<1故选C.【题目点拨】本题主要考查了奇函数的定义的应用及分式不等式的求解,属于基础试题.9、A【解题分析】
利用函数的奇偶性以及函数的周期性转化求解即可.【题目详解】因为f(x)是奇函数,且周期为2,所以f(﹣2017)+f(2018)=﹣f(2017)+f(2018)=﹣f(1)+f(0).当x∈[0,2)时,f(x)=log2(x+1),所以f(﹣2017)+f(2018)=﹣1+0=﹣1.故选:A.【题目点拨】本题考查函数的奇偶性以及函数的周期性的应用,考查计算能力.10、B【解题分析】分析:根据二项分布的期望和方差的计算公式,列出方程,即可求解答案.详解:由题意随机变量,又由,且,解得,故选B.点睛:本题主要考查了二项分布的期望与方差的计算公式的应用,其中熟记二项分布的数学期望和方差的计算公式是解答本题的关键,着重考查了推理与运算能力.11、B【解题分析】
通过展开式中项的系数为列方程,解方程求得的值.利用几何法求得定积分的值.【题目详解】展开式中项为即,条件知,则;于是被积函数图像,围成的图形是以为圆心,以2为半径的圆的,利用定积分的几何意义可得,选B.【题目点拨】本小题主要考查二项式展开式,考查几何法计算定积分,属于中档题.12、B【解题分析】
先利用二倍角的余弦公式化简函数解析式,然后利用周期公式可求答案.【题目详解】函数的最小正周期为:本题正确选项:【题目点拨】本题考查三角函数的周期性及其求法,考查二倍角的余弦公式,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2,0.1【解题分析】
于已知分布列,故可直接使用公式求期望、方差.【题目详解】Eξ=1×0.4+2×0.2+3×0.4=2,Dξ=(1﹣2)2×0.4+(2﹣2)2×0.2+(3﹣2)2×0.4=0.1.故答案为:2,0.1.【题目点拨】本题主要考查离散型随机变量的分布和数学期望、方差等基础知识,熟记期望、方差的公式是解题的关键.14、【解题分析】试题分析:考点:1.函数的性质;2.周期函数.15、【解题分析】
基本事件总数,这两条棱所在的直线为异面直线包含的基本事件个数,由此能求出这两条棱所在的直线为异面直线的概率.【题目详解】解:从四棱锥的八条棱中随机选取两条,基本事件总数,这两条棱所在的直线为异面直线包含的基本事件个数,则这两条棱所在的直线为异面直线的概率是.故答案为:.【题目点拨】本题考查概率的求法.求古典概型概率时,可采用列举法将基本事件一一列出;也可结合计数原理的思想.16、【解题分析】根据题意,有,于是函数关于对称,结合所有的零点的平均数为,可得,此时问题转化为函数,在上与直线有个公共点,此时,当时,函数的导函数,于是函数单调递增,且取值范围是,当时,函数的导函数,考虑到是上的单调递增函数,且,于是在上有唯一零点,记为,进而函数在上单调递减,在上单调递增,在处取得极小值,如图:接下来问题的关键是判断与的大小关系,注意到,,函数,在上与直线有个公共点,的取值范围是,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)已知,可得,则,并验证时,是否满足等式,从而知数列是等差数列,求其通项即可。(2)因为=,是由等差数列和等比数列的对应项的积组成的数列,用错位相减法即可求和。【题目详解】(1)因为,①所以当时,②①-②得:,因为的各项均为正数,所以,且,所以由①知,,即,又因为,所以故,所以数列是首项为,公差为的等差数列(2)由(1)得,所以,③④③-④得,当且时,,;当时,由③得综上,数列的前项和【题目点拨】本题主要考查了等差数列,等比数列以及数列的求和。利用等比数列求和公式时,当公比是字母时,要注意讨论公式的范围。属于中档题。18、(1);(2)当年产量为件时,所得利润最大.【解题分析】分析:(1)利用销售额减去成本即可得到年利润关于年产量的函数解析式;(2)分别利用二次函数的性质以及函数的单调性,求得两段函数值的取值范围,从而可得结果.详解:(1)由题意得:;(2)当时,函数对称轴为,故当时,;当时,函数单调递减,故,所以当年产量为件时,所得利润最大.点睛:本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者).19、(Ⅰ)单调递减区间为,单调递增区间为;(Ⅱ).【解题分析】
(Ⅰ)将代入函数的解析式,求出该函数的定义域与导数,解不等式和并与定义域取交集可分别得出该函数的单调递减区间和递增区间;(Ⅱ)求出函数的导数,分析函数在区间上的单调性,由题中条件得出,于此可解出实数的取值范围。【题目详解】(Ⅰ)函数的定义域为,当时,,,令,即,解得,令,即,解得,∴函数的单调递减区间为,单调递增区间为;(Ⅱ),,由得,,当时,,当时,,∴函数在上单调递减,在上单调递增,∵,,∴函数在上有两个不同的零点,只需,解得,∴的取值范围为.【题目点拨】本题考查利用导数求函数的单调区间,利用导数研究函数的零点个数问题,解题时常用导数研究函数的单调性、极值与最值,将零点个数转化为函数极值与最值的符号问题,若函数中含有单参数问题,可利用参变量分离思想求解,考查化归与转化思想,属于中等题。20、(1)证明见解析;(2).【解题分析】
(1)在内过点作,根据题意得到,进而可得出结论;(2)过点作于点,连接,得到即是直线与平面所成角,根据题中条件,求出,,由余弦定理得到,进而可求出结果.【题目详解】(1)在内过点作,因为,,且,所以,因为,所以;(2)过点作于点,连接,因为平面平面,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度律师事务所专业复印机及法律文件管理系统采购合同3篇
- 二零二五年度禽类养殖标准化示范项目禽类采购合同3篇
- 二零二五年度电子商务大赛赛事知识产权保护与侵权处理合同3篇
- 2024种植业务战略合作伙伴合同样本版B版
- 二零二五版高端石材采购与安装服务合同3篇
- 二零二五年度车队车辆租赁与售后服务合同2篇
- 2024药品采购及冷链物流服务保障协议3篇
- 2025年度校园食堂厨房设备采购与安装综合服务合同2篇
- 2025年度拍卖合同信息安全与隐私保护
- 2025年度智能穿戴设备销售合同协议4篇
- 2024年工程咨询服务承诺书
- 青桔单车保险合同条例
- 车辆使用不过户免责协议书范文范本
- 《狮子王》电影赏析
- 2023-2024学年天津市部分区九年级(上)期末物理试卷
- DB13-T 5673-2023 公路自愈合沥青混合料薄层超薄层罩面施工技术规范
- 河北省保定市定州市2025届高二数学第一学期期末监测试题含解析
- 哈尔滨研学旅行课程设计
- 2024 smart汽车品牌用户社区运营全案
- 中医护理人文
- 2024-2030年中国路亚用品市场销售模式与竞争前景分析报告
评论
0/150
提交评论