数形结合在小学数学中的应用_第1页
数形结合在小学数学中的应用_第2页
数形结合在小学数学中的应用_第3页
数形结合在小学数学中的应用_第4页
数形结合在小学数学中的应用_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数形结合在小学数学中的应用【内容提要】数形结合思想是一个重要的思想方法,在小学和中学,无论是在教师的课堂教学,对数学概念的理解,还是学生思维和解题能力的培养等方面,数形结合都为其奠定了坚实的基础。本课题主要通过分析自己亲身体会的中小学数学问题,发现数形结合思想在初等数学中的应用,加深对数形结合的理解。【关键词】数形结合思想,数学应用【正文】数与形一直以来都是数学的主题,即使如今的数学有着庞大的分支,仍不可磨灭它的影响力。华罗庚先生的打油诗:“数无形,少直观;形无数,少入微”向我们展现了数与形密不可分的关系。简单的说,数与形就是抽象与形象的表现,数形结合更加有利于学生对知识的理解,单纯的数使知识缺乏直观性,同样的如果只有形就少了几分严密性。然而,数形结合思想就是将本是相互独立的两方面结合起来,做到我中有你,你中有我。数形结合思想在小学和中学数学中有着许多巧妙的应用,比如在最初学习计数时,为了加深小朋友们对数字的记忆,教师常常会用形象的图形或者实物与数字对应;计数是学习数学的基础,教师往往会利用生活中的物品,例如铅笔、糖果、苹果等辅助数数、运算;每个班级都会对学生进行标号,也就是学号,久而久之,当某人说一个数时,你会联想到这个人;复杂的数学题考验你强大的逻辑思维,代数和几何是中学的两大基础,代数中加入具体形象的图像,帮助理清题意,拓展思路,几何中渗透代数,发散思维,解决问题等等。数形结合思想在小学数学的应用,我们学习数形结合并不单单为了解题,更应该将它上升为一种思想,学习数学的转向灯。数形结合思想已经贯穿数学学习的全部,小学是数学萌芽的阶段,在这个阶段,小学生的大脑并没有完全发育,他们对数的理解往往要依靠生活中他自己比较熟悉的事物,也就是“形”。如今“怎样开发小学生的数学思维能力”已经是近几年小学数学教育者一直思考的问题。我们可以发现近几年在小学数学课本中的每一个概念教学,教师都通过各种实物、事例或者图形逐步引导学生观察、分析、比较从中揭示其本质,而不单单依靠概念来解题。数学是一门考验学生逻辑思维能力、空间想象能力、判断推理能力的一门学科。如今是注重数学思维的年代,数形结合思想为方便小学生理解数学知识提供了渠道。1.看图提取数学信息北师大版小学数学课本常常会出现这句话“你能根据这个情景中提出哪些数学问题?”我在小学三年级实习期间感受最为深刻,我在上第六章乘法,乘火车这个单元的时候,课堂引入就包含数形结合思想。我先让学生通过角色扮演把单元开头的情景完全展示出来,然后让学生从这情景中提取数学信息,设计问题并解决。由于小朋友们对情景扮演比较感兴趣,本节课的课堂氛围非常好,数形结合在我这堂课发挥非常大的作用。例1小朋友们,从刚才的角色扮演中你听到了那些数学信息?说说你能提出的数学问题?问题一:爸爸乘的这列火车卧铺车厢能够乘坐几个人?5×72=360(人)答:爸爸乘的这列火车卧铺车厢能够乘坐360人。问题二:爸爸乘的这列火车硬座车厢能乘多少人?7×118=826(人)答:爸爸乘的这列火车硬座车厢能乘826人。问题三:爸爸乘的这列火车总共能乘多少人?360+826=1186(人)答:爸爸乘的这列火车总共能乘1186人。例2采蘑菇。仔细观察这幅图,说一说,里面有哪些数学问题?你能独立解决吗?分析:把这个问题给全班小朋友分析,许多同学会觉得乱,这时我们可以用画图使题目清晰。图5解:方法一:设小时后邵明追上余伊。4×3=12(km/h),12=12+4,8=12,=1.5。方法二:邵明追上余伊,从图中我们可以发现邵明比余伊多行12km,以这个为切入点进行计算。邵明的速度比余伊快4×3-4=8(km/h)邵明比余伊多走12km,即所花时间为12÷8=1.5(h)答:一个半小时后邵明追上余伊。追击问题是小学数学应用题中一个重要板块,它可以变化各种各样的形式,且难易各异。解决这类问题,好的逻辑思维能力非常关键,但由于题中信息量的原因,很容易让人搞不清头绪。线段图的出现即简单描述了情境,又将重要信息标注在上面,就本题而言,线段图帮助学生找出等量关系,如“邵明比余伊多行12km”,从而列出等式。例5张建在班级的读书角借了一本书,这本书一共有300页。一段时间后陈新一也想看这本书,可他只看了书的,剩下的部分如果要在6天内看完,然后把书给新一,张建平均每天要看多少页?图6解:1-=,300×=180(页),180÷6=30(页/天)。答:张建平均每天要看30页。这样的现象在小学是非常常见的,小朋友们常常喜欢看同一本书,遇到类似的问题你能巧妙地解决吗?其实就是把学生生活中的问题转化为数学问题,动员大家思考讨论,看看能否解决。线段图只是将数学信息具体化的一种方式,这种数转化为形最大的好处就是直观具体,从小学就开始培养数形结合的意识,有利于学生养成这样的习惯,今后即使遇到更加复杂的问题时也不至于手忙脚乱,有更多的思路去解决。数形结合思想从古到今有着无数前辈在对它作研究,有些甚至为它耗费毕生精力,可见这是一个永不衰老的话题。在我看来数形结合思想是数学学习一个重要的思想方法,“数无形,少直观;形无数,少入微”明确为我们展示了数和形的各自特点及其联系。同其它论文相比我加入了数形结合思想对小学数学的应用这一板块,翻阅近几年的小学教材,我们可以清楚的发现“看图提出数学问题”占据越来越多的比重,形象生动的图形在小学课堂是无比受欢迎的,它与数学的结合有效的激发学生的学习兴趣,促进学生空间想象能力的开发。从这一方面入手,我发现小学数学的其他方面的教学同样离不开数形结合,数形结合思想从越来越多的方面影响着课堂,同样他的应用也是越来越广泛。【参考文献】[1]王汉超.初中数学竞赛专题讲练[J].中学数学教学参考,2007(2):4-6.[2]莫红梅.谈数形结合在中学数学中的应用[J].教育实践与研究,2003:7-13.[4]黄佳琴.浅谈数形结合思想及其应用[J].杭州师范大学钱江学院,2013(2):12-18.[5]朱文俊.浅谈数形结合思想在初中数学教学中的应用[J].教科导刊,2010:8-11.[6]Morris-Kline.古今数学思想[M].张理京,张锦炎,江泽涵等译.上海:科学技术出版社,2009:137-216.[7]葛梅芳.关于高中生数形结合思想理解的研究[D].华东师范大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论