2024届柳州市重点中学数学九上期末学业水平测试试题含解析_第1页
2024届柳州市重点中学数学九上期末学业水平测试试题含解析_第2页
2024届柳州市重点中学数学九上期末学业水平测试试题含解析_第3页
2024届柳州市重点中学数学九上期末学业水平测试试题含解析_第4页
2024届柳州市重点中学数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届柳州市重点中学数学九上期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在同一坐标系内,一次函数与二次函数的图象可能是A. B. C. D.2.反比例函数,下列说法不正确的是()A.图象经过点(1,-3) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大3.已知AB、CD是⊙O的两条弦,AB∥CD,AB=6,CD=8,⊙O的半径为5,则AB与CD的距离是()A.1 B.7 C.1或7 D.无法确定4.如图,在正方形中,是的中点,是上一点,,则下列结论正确的有()①②③④∽A.1个 B.2个 C.3个 D.4个5.一张圆形纸片,小芳进行了如下连续操作:将圆形纸片左右对折,折痕为AB,如图.将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.连结AE、AF、BE、BF,如图.经过以上操作,小芳得到了以下结论:;四边形MEBF是菱形;为等边三角形;::.以上结论正确的有A.1个 B.2个 C.3个 D.4个6.若点是直线上一点,已知,则的最小值是()A.4 B. C. D.27.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n=-2m B.n=- C.n=-4m D.n=-8.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.9.如图,为的直径,和分别是半圆上的三等分点,连接,若,则图中阴影部分的面积为()A. B. C. D.10.如图,在△ABC中,∠A=90°,sinB=,点D在边AB上,若AD=AC,则tan∠BCD的值为()A. B. C. D.11.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣10123…y…﹣23676…当y<6时,x的取值范围是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>312.对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>-1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=________.14.已知二次函数y=ax2+bx+c的图象如图,对称轴为直线x=1,则不等式ax2+bx+c>0的解集是_____.15.如图,在△ABC中,∠B=45°,AB=4,BC=6,则△ABC的面积是__________.16.边长为1的正方形,在边上取一动点,连接,作,交边于点,若的长为,则的长为__________.17.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______时相遇;(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.18.抛物线y=(x﹣2)2的顶点坐标是_____.三、解答题(共78分)19.(8分)如图,一次函数的图象与反比例函数的图象交于,B

两点.(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围.20.(8分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.21.(8分)如图,在中,,点是边上一点,连接,以为边作等边.如图1,若求等边的边长;如图2,点在边上移动过程中,连接,取的中点,连接,过点作于点.①求证:;②如图3,将沿翻折得,连接,直接写出的最小值.22.(10分)如图,在Rt△ABC中,∠C=90°,BC=8,tanB=,点D在BC上,且BD=AD.求AC的长和cos∠ADC的值.23.(10分)某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价元时,日盈利为元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?24.(10分)如图,坡AB的坡比为1:2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H、A、T在同一条地平线MN上.(1)试问坡AB的高BT为多少米?(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°和30°,试求建筑物的高度CH.(精确到米,≈1.73,≈1.41)25.(12分)某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元,在销售过程中发现,月销售量(件)与销售单价(万元)之间存在着如图所示的一次函数关系(1)求关于的函数关系式.(2)试写出该公司销售该种产品的月获利(万元)关于销售单价(万元)的函数关系式,当销售单价为何值时,月获利最大?并求这个最大值.(月获利=月销售额一月销售产品总进价一月总开支)26.已知关于的方程(1)求证:无论为何值,方程总有实数根.(2)设,是方程的两个根,记,S的值能为2吗?若能,求出此时的值;若不能,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,

所以,两个函数图象与y轴相交于同一点,故B、D选项错误;

由A、C选项可知,抛物线开口方向向上,

所以,a>0,

所以,一次函数y=ax+b经过第一三象限,

所以,A选项错误,C选项正确.

故选C.2、D【解析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点的坐标满足反比例函数,故A是正确的;由,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数关于对称是正确的,故C也是正确的,由反比例函数的性质,,在每个象限内,随的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.【点睛】考查反比例函数的性质,当时,在每个象限内随的增大而增大的性质、反比例函数的图象是轴对称图象,和是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.3、C【分析】由于弦AB、CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8,CD=6,∴AE=4,CF=3,∵OA=OC=5,∴由勾股定理得:EO==3,OF==4,∴EF=OF﹣OE=1;②当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥AB于点E,反向延长OE交AD于点F,连接OA,OC,EF=OF+OE=1,所以AB与CD之间的距离是1或1.故选:C.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理及分类讨论的思想的应用.4、B【分析】由题中条件可得△CEF∽△BAE,进而得出对应线段成比例,进而又可得出△ABE∽△AEF,即可得出题中结论.【详解】∵四边形ABCD是正方形,

∴∠B=∠C=90°,AB=BC=CD,

∵AE⊥EF,

∴∠AEF=∠B=90°,

∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,

∴∠BAE=∠CEF,

∴△BAE∽△CEF,∴∵是的中点,∴BE=CE∴CE2=AB•CF,∴②正确;

∵BE=CE=BC,∴CF=BE=CD,故③错误;∵∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,

∴AE=2a,EF=a,AF=5a,∴∴∴△ABE∽△AEF,故④正确.

∴②与④正确.

∴正确结论的个数有2个.

故选:B.【点睛】此题考查了相似三角形的判定与性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.5、D【分析】根据折叠的性质可得∠BMD=∠BNF=90°,然后利用同位角相等,两直线平行可得CD∥EF,从而判定①正确;根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,然后根据对角线互相垂直平分的四边形是菱形求出四边形MEBF是菱形,从而得到②正确;根据直角三角形角所对的直角边等于斜边的一半求出∠MEN=30°,然后求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AEM=30°,从而得到∠AEF=60°,同理求出∠AFE=60°,再根据三角形的内角和等于180°求出∠EAF=60°,从而判定△AEF是等边三角形,③正确;设圆的半径为r,求出EN=,则可得EF=2EN=,即可得S四边形AEBF:S扇形BEMF的答案,所以④正确.【详解】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则EN=,∴EF=2EN=,∴S四边形AEBF:S扇形BEMF=故④正确,综上所述,结论正确的是①②③④共4个.故选:D.【点睛】本题圆的综合题型,主要考查了翻折变换的性质,平行线的判定,对角线互相垂直平分的四边形是菱形,等边三角形的判定与性质.注意掌握折叠前后图形的对应关系是关键.6、B【分析】根据题意先确定点B在哪个位置时的最小值,先作点A关于直线CD的对称点E,点B、E、O三点在一条直线上,再根据题意,连结OE与CD的交点就是点B,求出OE的长即为所求.【详解】解:在y=-x+2中,当x=0时,y=2,当y=0时,0=-x+2,解得x=2,

∴直线y=-x+2与x的交点为C(2.0),与y轴的交点为D(0,2),如图,∴OC=OD=2,∵OC⊥OD,:OC⊥OD,∴△OCD是等腰直角三角形,

∴∠OCD=45°,∴A(0,-2),∴OA=OC=2

连接AC,如图,

∵OA⊥OC,

∴△OCA是等腰直角三角形,

∴∠OCA=45°,

∴∠ACD=∠OCA+∠OCD=90°,

∴.AC⊥CD,

延长AC到点E,使CE=AC,连接BE,作EF⊥轴于点F,

则点E与点A关于直线y=-x+2对称,∠EFO=∠AOC=90,

点O、点B、点E三点共线时,OB+AB取最小值,最小值为OE的长,

在△CEF和△CAO中,

∴△CEF≌OCAO(AAS),

∴EF=OA=2,CF=OC=2

∴OF=OC+CF=4,

即OB+AB的最小值为.故选:B【点睛】本题考查的是最短路线问题,找最短路线是解题关键.找一点的对称点连接另一点和对称点与对称轴的交点就是B点.7、B【解析】试题分析:首先根据点C的坐标为(m,n),分别求出点A为(,n),点B的坐标为(-,-n),根据图像知B、C的横坐标相同,可得-=m.故选B点睛:此题主要考查了反比例函数的图像上的点的坐标特点,解答此题的关键是要明确:①图像上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在坐标系的图像上任取一点,过这个点向x轴、y轴分别作垂线.与坐标轴围成的矩形的面积是一个定值|k|.8、A【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.考点:(1)中心对称图形;(2)轴对称图形9、B【分析】阴影的面积等于半圆的面积减去△ABC和△ABD的面积再加上△ABE的面积,因为△ABE的面积是△ABC的面积和△ABD的面积重叠部分被减去两次,所以需要再加上△ABE的面积,然后分别计算出即可.【详解】设相交于点和分别是半圆上的三等分点,为⊙O的直径..,如图,连接,则,故选.【点睛】此题主要考查了半圆的面积、圆的相关性质及在直角三角形中,30°角所对应的边等于斜边的一半,关键记得加上△ABE的面积是解题的关键.10、C【分析】作DE⊥BC于E,在△CDE中根据已知条件可求得DE,CE的长,从而求得tan∠BCD.【详解】解:作DE⊥BC于E.∵∠A=90°,sinB=,设AC=3a=AD,则AB=4a,BC=5a,∴BD=AB-AD=a.∴DE=BD·sinB=a,∴根据勾股定理,得BE=a,∴CE=BC-BE=a,∴tan∠BCD=故选C.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形中三角函数值的计算,本题中正确求三角函数值是解题的关键.11、D【分析】根据表格确定出抛物线的对称轴,开口方向,然后根据二次函数的图像与性质解答即可.【详解】∵当x=1时,y=6;当x=1时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),由表格中的数据知,抛物线开口向下,∴当y<6时,x<1或x>1.故选D.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.12、C【解析】试题分析:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.考点:二次函数的性质二、填空题(每题4分,共24分)13、65°【解析】试题分析:先根据圆周角定理求出∠A的度数,再由垂径定理求出∠AED的度数,进而可得出结论.∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°﹣25°=65°考点:圆周角定理14、﹣1<x<1【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(1,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<1时,y>0,∴不等式ax2+bx+c>0的解集为﹣1<x<1.故答案为﹣1<x<1.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的另一个交点.15、6【分析】作辅助线AD⊥BC构造直角三角形ABD,利用锐角∠B的正弦函数的定义求出三角形ABC底边BC上的高AD的长度,然后根据三角形的面积公式来求△ABC的面积即可.【详解】过A作AD垂直BC于D,在Rt△ABD中,∵sinB=,∴AD=AB•sinB=4•sin45°=4×=,∴S△ABC=BC•AD=×6×=,故答案为:【点睛】本题考查了解直角三角形.解答该题时,通过作辅助线△ABC底边BC上的高线AD构造直角三角形,利用锐角三角函数的定义在直角三角形中求得AD的长度的.16、或【分析】根据正方形的内角为90°,以及同角的余角相等得出三角形的两个角相等,从而推知△ABE∽△ECF,得出,代入数值得到关于CE的一元二次方程,求解即可.【详解】解:∵正方形ABCD,

∴∠B=∠C,∠BAE+∠BEA=90°,

∵EF⊥AE,

∴∠BEA+∠CEF=90°,

∴∠BAE=∠CEF,

∴△ABE∽△ECF,.解得,CE=或.故答案为:或.【点睛】考查了四边形综合题型,需要掌握三角形相似的判定与性质,正方形的性质以及一元二次方程的应用,解题的关键是根据相似三角形得出一元二次方程,难度不大.17、(1)、小于;(2)、6;(3)、9、4【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用18、(2,0).【分析】已知条件的解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【详解】解:∵抛物线解析式为y=(x﹣2)2,∴二次函数图象的顶点坐标是(2,0).故答案为(2,0).【点睛】本题的考点是二次函数的性质.方法是根据顶点式的坐标特点写出答案.三、解答题(共78分)19、(1);;(2)或;【解析】(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围.【详解】(1)

过点,,反比例函数的解析式为;点在

上,,

,一次函数过点,

,解得:.一次函数解析式为;(2)由图可知,当或时,一次函数值大于反比例函数值.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.20、(1)直线DE与⊙O相切;(2)4.1.【分析】(1)连接OD,通过线段垂直平分线的性质和等腰三角形的性质证明∠EDB+∠ODA=90°,进而得出OD⊥DE,根据切线的判定即可得出结论;(2)连接OE,作OH⊥AD于H.则AH=DH,由△AOH∽△ABC,可得,推出AH=,AD=,设DE=BE=x,CE=8-x,根据OE2=DE2+OD2=EC2+OC2,列出方程即可解决问题;【详解】(1)连接OD,∵EF垂直平分BD,∴EB=ED,∴∠B=∠EDB,∵OA=OD,∴∠ODA=∠A,∵∠C=90°,∴∠A+∠B=90°,∴∠EDB+∠ODA=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)连接OE,作OH⊥AD于H.则AH=DH,∵△AOH∽△ABC,∴,∴,∴AH=,AD=,设DE=BE=x,CE=8﹣x,∵OE2=DE2+OD2=EC2+OC2,∴42+(8﹣x)2=22+x2,解得x=4.1,∴DE=4.1.【点睛】本题考查切线的判定和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.21、(1);(2)证明见解析;(3)最小值为【分析】(1)过C做CF⊥AB,垂足为F,由题意可得∠B=30°,用正切函数可求CF的长,再用正弦函数即可求解;(2)如图(2)1:延长BC到G使CG=BC,易得△CGE≌△CAD,可得CF∥GE,得∠CFA=90°,CF=GE再证DG=AD,得CF=DG,可得四边形DGFC是矩形即可;(3)如图(2)2:设ED与AC相交于G,连接FG,先证△EDF≌△FD'B得BD'=DE,当DE最大时最小,然后求解即可;【详解】解:(1)如图:过C做CF⊥AB,垂足为F,∵,∴∠A=∠B=30°,BF=3∵tan∠B=∴CF=又∵sin∠CDB=sin45°=∴DC=∴等边的边长为;①如图(2)1:延长BC到G使CG=BC∵∠ACB=120°∴∠GCE=180°-120°=60°,∠A=∠B=30°又∵∠ACB=60°∴∠GCE=∠ACD又∵CE=CD∴△CGE≌△CAD(SAS)∴∠G=∠A=30°,GE=AD又∵EF=FB∴GE∥FC,GE=FC,∴∠BCF=∠G=30°∴∠ACF=∠ACB-∠BCF=90°∴CF∥DG∵∠A=30°∴GD=AD,∴CF=DG∴四边形DGFC是平行四边形,又∵∠ACF=90°∴四边形DGFC是矩形,∴②)如图(2)2:设ED与AC相交于G,连接FG由题意得:EF=BF,∠EFD=∠D'FB∴△EDF≌△FD'B∴BD'=DE∴BD'=CD∴当BD'取最小值时,有最小值当CD⊥AB时,BD'min=AC,设CDmin=a,则AC=BC=2a,AB=2a的最小值为;【点睛】本题属于几何综合题,考查了矩形的判定、全等三角形的判定、直角三角形的性质等知识点;但本题知识点比较隐蔽,正确做出辅助线,发现所考查的知识点是解答本题的关键.22、AC=1;cos∠ADC=【详解】解:在Rt△ABC中,∵BC=8,,∴AC=1.设AD=x,则BD=x,CD=8-x,由勾股定理,得(8-x)2+12=x2.解得x=3.∴.23、(1)(30-x);10x;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x元,超市平均每天可多售出10x件;(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w,化为一般式后,再配方可得出结论.【详解】解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x件;(2)设每件商品降价x元时,利润为w元根据题意得:w=(30x)(100+10x)=10x2+200x+3000=-10(x-10)2+4000∵10<0,∴w有最大值,当x=10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,商场日盈利最大,最大值是4000元.【点睛】本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w关于x的二次函数解析式是解题的关键.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论