




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安电子科技中学2023-2024学年高一上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若正数x,y满足,则的最小值为()A.4 B.C.8 D.92.“密位制”是用于航海方面的一种度量角的方法,我国采用的“密位制”是密位制,即将一个圆周角分为等份,每一个等份是一个密位,那么密位对应弧度为()A. B.C. D.3.已知一个直三棱柱的高为2,如图,其底面ABC水平放置的直观图(斜二测画法)为,其中,则此三棱柱的表面积为()A. B.C. D.4.已知函数在区间上单调递增,且在区间上只取得一次最大值,则取值范围是()A. B.C. D.5.函数的最小值和最小正周期为()A.1和2π B.0和2πC.1和π D.0和π6.已知幂函数y=f(x)经过点(3,),则f(x)()A.是偶函数,且在(0,+∞)上是增函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是减函数D.是非奇非偶函数,且在(0,+∞)上是增函数7.函数(且)的图象一定经过的点是()A. B.C. D.8.函数的零点一定位于下列哪个区间().A. B.C. D.9.函数的图象的横坐标和纵坐标同时扩大为原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为A. B.C. D.10.下列函数中,既是奇函数又在定义域上是增函数的为A. B.C. D.11.已知是第三象限角,且,则()A. B.C. D.12.已知函数则()A.- B.2C.4 D.11二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设函数的图象关于y轴对称,且其定义域为,则函数在上的值域为________.14.我国采用的“密位制”是6000密位制,即将一个圆周分为6000等份,每一个等份是一个密位,那么120密位等于______rad15.函数一段图象如图所示则的解析式为______16.不等式的解为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数的定义域为,在上为增函数,且对任意的,都有(1)试判断的奇偶性;(2)若,求实数的取值范围18.已知二次函数满足.(1)求b,c的值;(2)若函数是奇函数,当时,,(ⅰ)直接写出的单调递减区间为;(ⅱ)若,求a的取值范围.19.已知函数,(1)求函数的最大值及取得最大值时的值;(2)若方程在上的解为,,求的值20.已知集合=R.(1)求;(2)求(A);(3)如果非空集合,且A,求的取值范围.21.已知,(1)分别求,的值;(2)若角终边上一点,求的值22.为保护环境,污水进入河流前都要进行净化处理.我市工业园区某工厂的污水先排入净化池,然后加入净化剂进行净化处理.根据实验得出,在一定范围内,每放入1个单位的净化剂,在污水中释放的浓度y(单位:毫克/立方米)随着时间x(单位:小时)变化的函数关系式近似为.若多次加进净化剂,则某一时刻净化剂在污水中释放的浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当净化剂在污水中释放的浓度不低于4(毫克/立方米)时,它才能起到净化污水的作用.(1)若投放1个单位的净化剂4小时后,求净化剂在污水中释放的浓度;(2)若一次投放4个单位的净化剂并起到净化污水的作用,则净化时间约达几小时?(结果精确到0.1,参考数据:,)(3)若第一次投放1个单位的净化剂,3小时后再投放2个单位的净化剂,设第二次投放t小时后污水中净化剂浓度为(毫克/立方米),其中,求的表达式和浓度的最小值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】由已知可得,然后利用基本不等式可求得结果【详解】解:因为正数x,y满足,所以,当且仅当,即时取等号,所以的最小值为8,故选:C【点睛】此题考查基本不等式应用,利用了“1”的代换,属于基础题2、B【解析】根据弧度制公式即可求得结果【详解】密位对应弧度为故选:B3、C【解析】根据斜二测画法的“三变”“三不变”可得底面平面图,然后可解.【详解】由斜二测画法的“三变”“三不变”可得底面平面图如图所示,其中,所以,所以此三棱柱的表面积为.故选:C4、C【解析】根据三角恒等变换化简,结合函数单调区间和取得最值的情况,利用整体法即可求得参数的范围.【详解】因为,因为在区间上单调递增,由,则,则,解得,即;当时,,要使得该函数取得一次最大值,故只需,解得;综上所述,的取值范围为.故选:C.第II卷5、D【解析】由正弦函数的性质即可求得的最小值和最小正周期【详解】解:∵,∴当=﹣1时,f(x)取得最小值,即f(x)min;又其最小正周期Tπ,∴f(x)的最小值和最小正周期分别是:,π故选D【点睛】本题考查正弦函数的周期性与最值,熟练掌握正弦函数的图象与性质是解题关键,属于中档题6、D【解析】利用幂函数的定义求得指数的值,得到幂函数的解析式,进而结合幂函数的图象判定单调性和奇偶性【详解】设幂函数的解析式为,将点的坐标代入解析式得,解得,∴,函数的定义域为,是非奇非偶函数,且在上是增函数,故选:D.7、D【解析】由函数解析式知当时无论参数取何值时,图象必过定点即知正确选项.【详解】由函数解析式,知:当时,,即函数必过,故选:D.【点睛】本题考查了指数型函数过定点,根据解析式分析自变量取何值时函数值不随参数变化而变化,此时所得即为函数的定点.8、C【解析】根据零点存在性定理可得结果.【详解】因为函数的图象连续不断,且,,,,根据零点存在性定理可知函数的零点一定位于区间内.故选:C【点睛】关键点点睛:掌握零点存在性定理是解题关键.9、D【解析】函数的图像的横坐标和纵坐标同时扩大为原来的3倍,所得图像的解析式为,再向右平移3个单位长度,所得图像的解析式为,选D.10、D【解析】选项,在定义域上是增函数,但是是非奇非偶函数,故错;选项,是偶函数,且在上是增函数,在上是减函数,故错;选项,是奇函数且在和上单调递减,故错;选项,是奇函数,且在上是增函数,故正确综上所述,故选11、A【解析】由是第三象限角可判断,利用平方关系即可求解.【详解】解:因为是第三象限角,且,所以,故选:A.12、C【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【详解】由题意,函数,可得,所以.故选:C.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】∵函数的图象关于y轴对称,且其定义域为∴,即,且为偶函数∴,即∴∴函数在上单调递增∴,∴函数在上的值域为故答案为点睛:此题主要考查函数二次函数图象对称的性质以及二次函数的值域的求法,求解的关键是熟练掌握二次函数的性质,本题理解对称性很关键14、##【解析】根据已知定义,结合弧度制的定义进行求解即可.【详解】设120密位等于,所以有,故答案为:15、【解析】由函数的最值求出A,由周期求出,由五点法作图求出的值,从而得到函数的解析式【详解】由函数的图象的顶点的纵坐标可得,再由函数的周期性可得,再由五点法作图可得,故函数的解析式为,故答案为【点睛】本题主要考查函数的部分图象求解析式,由函数的最值求出A,由周期求出,由五点法作图求出的值,属于中档题16、【解析】根据幂函数的性质,分类讨论即可【详解】将不等式转化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此时无解;综上,不等式的解集为:故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)奇函数(2)【解析】(1)抽象函数用赋值法,再结合函数奇偶性的定义判断即可;(2)利用奇函数的单调性和定义及函数的单调性,联立不等式不等式组,再解不等式组即可.【小问1详解】因为函数定义域为,令,得.令,得,即,所以函数为奇函数【小问2详解】由(1)知函数为奇函数,又知函数的定义域为,在上为增函数,所以函数在上为增函数因为,即,所以,解得,所以实数的取值范围为18、(1);;(2)或【解析】(1)代值计算即可,(2)先根据函数的奇偶性求出的解析式,(i)根据函数的解析式和二次函数的性质即可求出函数的单调减区间,(ii)根据函数单调性性质可得或解得即可.试题解析:二次函数满足,解得:;.(2)(ⅰ)(ⅱ)由(1)知,则当时,;当时,,则因为是奇函数,所以.若,则或解得或.综上,a的取值范围为或.19、(1)当时,函数取得最大值为;(2).【解析】(1)利用同角三角函数的平方关系化简,再利用换元法即可求最值以及取得最值时的值;(2)求出函数的对称轴,得到和的关系,利用诱导公式化简可得答案.【详解】(1),令,可得,对称轴为,开口向下,所以在上单调递增,所以当,即,时,,所以当时,函数取得最大值为;(2)令,可得,当时,是的对称轴,因为方程在上的解为,,,,且,所以,所以,所以,所以的值为.20、(1)(2)(3)或.【解析】(1)化简集合、,根据并集的定义写出;(2)根据补集与交集的定义写出;(3)根据非空集合与,得出关于的不等式,求出解集即可试题解析:(1)∵===∴(2)∵A=∴A)(3)非空集合∴,即∵A∴或即或∴或21、(1)(2)-7【解析】(1)由的值以及的范围,利用同角三角函数的基本关系即可求的值,进而可得的值,利用两角和的正弦公式求.(2)利用三角函数的定义可求的值,利用正切的二倍角公式可求出的值,再由两角和的正切公式即可求解.【小问1详解】因为,,所以,所以,.【小问2详解】由三角函数的定义可得,由正切的二倍角公式可得,22、(1)6毫克/立方米(2)7.1(3),;的最小值为12毫克/立方米【解析】(1)由函数解析式,将代入即可得解;(2)分和两种情况讨论,根据题意列出不等式,从而可得出答案;(3)根据题意写出函数的解析式,再根据基本不等式即可求得最小值.【小问1详解】解:由,当时,,所以若投放1个单位的净化剂4小时后,净化剂在污水中释放的浓度为6毫克/立方米;【小问2详解】解:因为净化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- CPA财务成本管理第十二章产品成本计算相关习题及解析20题
- 聘用幼儿园园长协议书
- 爸爸的背影成长的故事6篇
- 接受忠告作文800字10篇
- 一堂生动的语文课生动的课堂记叙文6篇
- 2025年凝血酶原复合物项目提案报告
- 2025年铍板、棒、异形件项目申请报告
- 2025年乡村医生公共卫生服务考试题库:公共卫生服务慢性病管理心理辅导试题
- 保护环境的重要性:议论文作文11篇
- 2025年俄语ТРКИ考试语法应用专项试卷
- 新教科版三年级下册科学期末测试卷及完整答案(网校专用)
- 2024届福建省宁德市英语七下期末综合测试试题含答案
- 三年级下册道德与法治课件-第二单元《我在这里长大》教材解读-人教(新版)
- 《天然气压缩机》
- 铁路行车组织(高职)全套教学课件
- 市政道路工程技术标正文样本
- 大脑后动脉动脉瘤破裂伴蛛网膜下腔出血个案护理
- 东方市生活垃圾焚烧炉渣综合利用项目 环评报告
- 如何预防错混料
- 不规格符石镶嵌工艺
- 全新版大学进阶英语综合教程2综合训练第二单元(含答案)
评论
0/150
提交评论