版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市师大附中2024届数学八上期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是则成绩最稳定的是().A.甲 B.乙 C.丙 D.丁2.下列运算不正确的是()A. B. C. D.3.如图一个五边形木架,要保证它不变形,至少要再钉上几根木条()A.4 B.3 C.2 D.14.若把分式中的x和y都扩大到原来的3倍,那么分式的值()A.扩大为原来的3倍; B.缩小为原来的; C.缩小为原来的; D.不变;5.在一篇文章中,“的”、“地”、“和”三个字共出现50次,已知“的”和“地”出现的频率之和是0.7,那么“和”字出现的频数是()A.14B.15C.16D.176.点关于轴的对称点的坐标是()A.(2,-3) B.(-2,-3) C.(-2,3) D.(-3,2)7.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm8.若,则m,n的值分别为()A. B.C. D.9.如图,△ABC与△DEF关于y轴对称,已知A,B,E(2,1),则点D的坐标为()A. B. C. D.10.下列计算正确的是()A.a5•a3=a8 B.C. D.(﹣m+n)(m﹣n)=m2﹣n211.的平方根与-8的立方根之和是()A.0 B.-4 C.4 D.0或-412.如果等腰三角形的一个角是80°,那么它的底角是A.80°或50°B.50°或20°C.80°或20°D.50°二、填空题(每题4分,共24分)13.计算:___________________.14.如图,在直角坐标系中,点是线段的中点,为轴上一个动点,以为直角边作等腰直角(点以顺时针方向排列),其中,则点的横坐标等于_____________,连结,当达到最小值时,的长为___________________.15.已知点A(l,-2),若A、B两点关于x轴对称,则B点的坐标为_______16.在平面直角坐标系xOy中,二元一次方程ax+by=c的图象如图所示.则当x=3时,y的值为_______.17.如图,在等边三角形中,,点为边的中点,点为边上的任意一点(不与点重合),将沿折叠使点恰好落在等边三角形的边上,则的长为_______cm.18.若点关于轴的对称点的坐标是,则的值是__________.三、解答题(共78分)19.(8分)如图,在中,,点是直线上一点.(1)如图1,若,点是边的中点,点是线段上一动点,求周长的最小值.(2)如图2,若,,是否存在点,使以,,为顶点的三角形是等腰三角形,若存在,请直按写出线段的长度:若不存在,请说明理由.20.(8分)因式分解:(1)(2)21.(8分)如图,在中,.求的度数.22.(10分)如图所示,数轴上表示的对应点分别为,点关于点的对称点为,设点所表示的数为.写出实数的值.求的值.23.(10分)已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.24.(10分)观察下列算式:①1×3-22=3-4=-1②2×4-32=8-9=-1③3×5-42=15-16=-1④......(1)请按以上规律写出第4个算式;(2)写出第n个算式;(3)你认为(2)中的式子一定成立吗?请证明.25.(12分)在图中网格上按要求画出图形,并回答下列问题:(1)把△ABC平移,使点A平移到图中点D的位置,点B、C的对应点分别是点E、F,请画出△DEF;(2)画出△ABC关于点D成中心对称的△;(3)△DEF与△(填“是”或“否”)关于某个点成中心对称,如果是,请在图中画出对称中心,并记作点O.26.如图,平面直角坐标系中,、,且、满足(1)求、两点的坐标;(2)过点的直线上有一点,连接、,,如图2,当点在第二象限时,交轴于点,延长交轴于点,设的长为,的长为,用含的式子表示;(3)在(2)的条件下,如图3,当点在第一象限时,过点作交于点,连接,若,,求的长.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙、丁的方差可作出判断.【详解】解:由于S丁2<S丙2<S甲2<S乙2,则成绩较稳定的是丁.
故选:D【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、D【分析】结合选项分别进行同底数幂的乘法、幂的乘方和积的乘方的运算,然后选择正确选项.【详解】解:A.,计算正确,故本选项错误;
B.,计算正确,故本选项错误;
C.,原式计算正确,故本选项错误;
D.,计算错误,故本选项正确.
故选:D.【点睛】本题考查了同底数幂的乘法、幂的乘方和积的乘方等知识,掌握运算法则是解答本题的关键.3、C【分析】根据三角形具有稳定性,钉上木条后把五边形分成三角形即可.【详解】如图,要保证它不变形,至少还要再钉上2根木条.故选C.【点睛】本题考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.4、B【解析】x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y.用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.【详解】用3x和3y代替式子中的x和y得:,则分式的值缩小成原来的.故选B.【点睛】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.5、B【解析】根据“的”和“地”的频率之和是0.7,得出“和”字出现的频率是0.3,再根据频数=频率×数据总数,即可得出答案.【详解】解:由题可得,“和”字出现的频率是1﹣0.7=0.3,∴“和”字出现的频数是50×0.3=15;故选:B.【点睛】此题考查了频数和频率之间的关系,掌握频率的定义:每个对象出现的次数与总次数的比值(或者百分比)即频数=频率×数据总数是本题的关键.6、B【分析】根据关于轴的对称点的点的特点是保持y不变,x取相反数即可得出.【详解】根据关于轴的对称点的点的特点得出,点关于轴的对称点的坐标是(-2,-3)故答案选B.【点睛】本题考查了坐标点关于y轴对称点的坐标,属于坐标轴中找对称点的基础试题.7、B【解析】根据“AAS”证明
ΔABD≌ΔEBD
.得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD(AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.8、C【分析】先根据多项式乘以多项式的法则计算,再根据多项式相等的条件即可求出m、n的值.【详解】∵,
∵,
∴,
∴,.
故选:C.【点睛】本题主要考查了多项式乘以多项式的法则:.注意不要漏项,漏字母,有同类项的合并同类项.9、B【解析】∵△ABC与△DEF关于y轴对称,A(-4,6),∴D(4,6),故选B.10、A【分析】根据整式的运算法则即可求出答案;【详解】A.a5•a3=a8,本选项正确;B.,本选项错误;C.,本选项错误;D.(﹣m+n)(m﹣n)=,本选项错误;故选:A.【点睛】本题主要考查了整式的混合运算,准确计算是解题的关键.11、D【解析】首先计算的平方根、-8的立方根,然后求和即可.【详解】∵=4,∴的平方根为2,∵-8的立方根为-2,∴的平方根与-8的立方根之和是0或-4,故选D.【点睛】本题考查平方根与立方根,一个正数的平方根有两个,它们互为相反数,0的平方根是0,熟练掌握平方根与立方根的概念是解题关键.12、A【解析】根据题意,分已知角是底角与不是底角两种情况讨论,结合三角形内角和等于180°,分析可得答案.【详解】根据题意,一个等腰三角形的一个角等于80°,
①当这个角是底角时,即该等腰三角形的底角的度数是80°,
②当这个角80°是顶角,
设等腰三角形的底角是x°,
则2x+80°=180°,
解可得,x=50°,
即该等腰三角形的底角的度数是50°;
故选:A.【点睛】考查了等腰三角形的性质,及三角形内角和定理;通过三角形内角和,列出方程求解是正确解答本题的关键.二、填空题(每题4分,共24分)13、【分析】根据二次根式乘法法则以及零指数幂的意义先算乘法,然后把积进行相减即可.【详解】解:原式=-41=-=故答案.【点睛】本题考查了二次根式乘法法则和零指数幂的意义.二次根式乘法法则:两个算数平方根的积,等于它们被开方数的积的算术平方根.零指数幂的意义:任何一个不等于0的数的零次幂都等于1.14、【分析】(1)过E点作EF⊥y轴于点F,求证,即可的到点的横坐标;(2)设点E坐标,表示出的解析式,得到的最小值进而得到点E坐标,再由得到点D坐标,进而得到的长.【详解】(1)如下图,过E点作EF⊥y轴于点F∵EF⊥y轴,∴,∴∵为等腰直角三角形∴在与中∴∴∵∴∴点的横坐标等于;(2)根据(1)设∵,,是线段的中点∴∴∴当时,有最小值,即有最小值∴∵∴∵∴∴∴,故答案为:;.【点睛】本题主要考查了三角形全等的判定,点坐标的表示,二次函数的最值问题,两点之间的距离公式等,熟练掌握综合题的解决技巧是解决本题的关键.15、(1,2)【详解】关于x轴对称,则两个点的横坐标不变,纵坐标互为相反数,故B点的坐标为(1,2).16、【分析】从给出图象中得到二元一次方程的两组解,进而确定具体的二元一次方程为x+2y=2,再代入x=3即可求出y的值.【详解】解:从图象可以得到,和是二元一次方程ax+by=c的两组解,∴2a=c,b=c,∴x+2y=2,当x=3时,y=,故答案为.【点睛】本题考查二元一次方程的解与一次函数图象的关系;能够从一次函数图象上获取二元一次方程的解,代入求出具体的二元一次方程是解题的关键.17、或【分析】如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,于是得到MN⊥AB,BN=BN′,根据等边三角形的性质得到AC=BC,∠ABC=60°,根据线段中点的定义得到BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,根据线段中点的定义即可得到结论.【详解】解:如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,则MN⊥AB,BN=BN′,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=60°,∵点M为边BC的中点,∴BM=BC=AB=,∴BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,∵∠ABC=60°,点M为边BC的中点,∴BN=BM=BC=AB=,,故答案为:或.【点睛】本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键.18、-1【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得3=n,m+4=0,解出m、n的值,可得答案.【详解】解:∵点关于轴的对称点的坐标是,∴3=n,m+4=0,∴n=3,m=-4,∴m+n=-1.故答案为:-1.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.三、解答题(共78分)19、(1);(2)存在,CD=1或8或或.【分析】(1)本小题是典型的“将军饮马”问题,只要作点C关于直线AB的对称点E,连接BE、DE,DE交AB于点M,如图1,则此时的周长最小,且最小值就是CD+DE的长,由于CD易求,故只要计算DE的长即可,由轴对称的性质和等腰直角三角形的性质可得BE=BC=2,∠DBE=90°,然后根据勾股定理即可求出DE,问题即得解决;(2)由于点是直线上一点,所以需分三种情况讨论:①当AB=AD时,如图4,根据等腰三角形的性质求解即可;②当BD=BA时,如图5,根据勾股定理和等腰三角形的定义求解;③当DA=DB时,如图6,设CD=x,然后在直角△ACD中根据勾股定理求解即可.【详解】解:(1)作点C关于直线AB的对称点E,连接BE、DE,DE交AB于点M,连接CM,如图1,则此时的周长最小.∵,,点是边的中点,∴∠CBA=45°,BD=CD=1,∵点C、E关于直线AB对称,∴BE=BC=2,∠EBA=∠CBA=45°,∴∠DBE=90°,∴.∴的周长的最小值=CD+DE=;(2)由于点是直线上一点,所以需分三种情况讨论:①当AB=AD时,如图4,此时CD=CB=8;②当BD=BA时,如图5,在直线BC上存在两点符合题意,即D1、D2,∵,∴,;③当DA=DB时,如图6,此时点D为线段AB的垂直平分线与直线BC的交点,设CD=x,则BD=AD=8-x,在直角△ACD中,根据勾股定理,得:,解得:x=1,即CD=1.综上,在直线BC上存在点,使以,,为顶点的三角形是等腰三角形,且CD=1或8或或.【点睛】本题考查了等腰直角三角形的性质、两线段之和最小、等腰三角形的性质和勾股定理等知识,属于常考题型,正确分类、熟练掌握上述基本知识是解题的关键.20、(1);(2)【分析】(1)通过提取公因式法和平方差公式,即可得到答案;(2)通过提取公因式法和完全平方公式,即可得到答案.【详解】(1)原式;(2)原式.【点睛】本题主要考查分解因式,掌握提取公因式法和公式法因式分解,是解题的关键.21、37.5°【分析】利用等边对等角的性质结合三角形内角和定理可求出,再根据外角的性质可得的度数.【详解】证明:∵,,∴.又∵,∴.而,∴.【点睛】本题主要考查了等腰三角形的性质,还涉及了三角形内角和定理及三角形外角的性质,灵活利用等腰三角形等边对等角的性质是解题的关键.22、(1);(2)【分析】(1)由点B关于A点的对称点为C,可知A点为B、C两点的中点,根据线段中点的性质求解即可;(2)将x值代入,计算即可求得答案.【详解】解:(1)数轴上的对应点分别为,点关于点的对称点为A点为B、C两点的中点解得:故实数;(2)当时,故.【点睛】本题考查了实数与数轴、代数式求值,解题的关键是利用线段的中点正确求出的值.23、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由垂直的性质推出∠ADC=∠FDB=90°,再由∠ACB=45°,推出∠ACB=∠DAC=45°,即可求得AD=CD,根据全等三角形的判定定理“ASA”,即可推出结论;(2)由(1)的结论推出BD=DF,根据AD⊥BC,即可推出∠DBF=∠DFB=45°,再由∠ACB=45°,通过三角形内角和定理即可推出∠BEC=90°,即BE⊥AC.试题解析:(1)∵AD⊥BC,∴∠ADC=∠ADB=90°,又∵∠ACB=45°,∴∠DAC=45°,∴∠ACB=∠DAC,∴AD=CD,在△ABD和△CFD中,∠BAD=∠FCD,AD=CD∠ADB=∠FDC,∴△ABD≌△CFD;(2)∵△ABD≌△CFD,∴BD=FD,∴∠1=∠2,又∵∠FDB=90°,∴∠1=∠2=45°,又∵∠ACD=45°,∴△BEC中,∠BEC=90°,∴BE⊥AC.考点:1.等腰三角形的判定与性质;2.全等三角形的判定与性质;3.等腰直角三角形.24、(1)4×6-52=24-25=-1;(2)n(n+2)-(n+1)2=-1;(3)见解析.【解析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中发现的规律,由特殊到一般,得出结论;(3)利用整式的混合运算方法加以证明.【详解】解:(1)第4个算式为:4×6−52=24−25=−1;(2)n(n+2)-(n+1)2=-1;(3)一定成立.理由:n(n+2)−(n+1)2=n2+2n−(n2+2n+1)=n2+2n−n2−2n−1=−1.故n(n+2)-(n+1)2=-1成立.【点睛】本题是规律型题,考查了整式的混合运算的运用.关键是由特殊到一般,得出一般规律,运用整式的运算进行检验.25、(1)见解析;(2)见解析;(3)是,见解析【分析】(1)由题意得出,需将点B与点C先向左平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招标文件评审记录跟踪查询
- 九年级道德与法治上册 第二单元 感受祖国的心跳 第四课 城乡直通车 第3框 城乡统筹教案 人民版
- 2024-2025学年新教材高中生物 第1章 遗传因子的发现 第1节 第1课时 一对相对性状的杂交实验过程和解释教案 新人教版必修第二册
- 安徽省滁州二中高中信息技术《5.1认识信息资源的管理》教案 新人教版必修
- 广东省2024-2025年高中物理 学业水平测试冲A 第6章 机械能和能源教案(含解析)
- 2023七年级英语下册 Unit 3 How do you get to school Section B 第5课时(3a-3b)教案 (新版)人教新目标版
- 2023六年级数学下册 第四单元 圆柱和圆锥4.8 估算小麦堆的质量教案 冀教版
- 自建房修建及安全合同(2篇)
- 人教版血管课件
- 第六讲 变换句型写一写(看图写话教学)-一年级语文上册(统编版·2024秋)
- 消费者咨询业务试题及答案(4月4更新)
- 重点环节、重点部位医院感染预防与控制
- 晕厥的诊断与治疗晕厥专家讲座
- 海尔bcd系列冰箱说明书
- 弘扬民族精神奔流不息民族魂
- 《最后一次讲演》优秀教案及教学反思(部编人教版八年级下册)共3篇
- 2023年公共营养师之三级营养师真题及答案
- 研学安全主题班会课件
- 《观察洋葱表皮细胞》实验记录单
- 国开电大中国古代文学(B)(1)形考四
- 幼儿园讲卫生健康科普认识医生和护士主题教育班会PPT教学课件
评论
0/150
提交评论