




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳秦都区四校联考2024届数学八上期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4 B.5a²,6a²,10a²C.3a,4a,a D.a-1,a-2,3a-32.若,,则()A. B. C. D.3.下列命题中,属于假命题的是()A.相等的两个角是对顶角 B.两直线平行,同位角相等C.同位角相等,两直线平行 D.三角形三个内角和等于180°4.已知:将直线沿着轴向下平移2个单位长度后得到直线,则下列关于直线的说法正确的是()A.经过第一、二、四象限 B.与轴交于C.与轴交于 D.随的增大而减小5.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是()秒A.2.5 B.3 C.3.5 D.46.如图,在中,,,是的平分线,,垂足为,若,则的周长为()A.10 B.15 C.10 D.207.《个人所得税》规定:全月总收入不超过3500元的免征个人工资薪金所得税,超过3500元,超过的部分(记为x)按阶梯征税,税率如下:级数x税率1不超过1500元的部分3%2超过1500元至4500元的部分10%3超过4500元至9000元的部分20%若某人工资薪金税前为7000元,则税后工资薪金为()A.245 B.350 C.6650 D.67558.计算的结果是()A.a2 B.-a2 C.a4 D.-a49.下列运算结果为x-1的是()A. B. C. D.10.在平面直角坐标系中,点与点关于轴对称,则在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.平面直角坐标系内,点A(-2,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图所示,下列图形不是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.14.分解因式:_____.15.如图,点B,A,D,E在同一条直线上,AB=DE,BC∥EF,请你利用“ASA”添加一个条件,使△ABC≌△DEF,你添加的条件是_____.16.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么4※8=________.17.计算:_________.18.的立方根是__________.三、解答题(共78分)19.(8分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,两个大正方形和两个小正方形的面积和为58cm2,试求m+n的值(3)②图中所有裁剪线(虚线部分)长之和为cm.(直接写出结果)20.(8分)某校260名学生参加植树活动,要求每人植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数和中位数;(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵?21.(8分)阅读理解在平面直角坐标系中,两条直线,①当时,,且;②当时,.类比应用(1)已知直线,若直线与直线平行,且经过点,试求直线的表达式;拓展提升(2)如图,在平面直角坐标系中,的顶点坐标分别为:,试求出边上的高所在直线的表达式.22.(10分)数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程;(1)小明的想法是:将边长为的正方形右下角剪掉一个边长为的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.(2)小白的想法是:在边长为的正方形内部任意位置剪掉一个边长为的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.23.(10分)如图,已知直线AB与CD相交于点O,OE平分∠BOD,OE⊥OF,且∠AOC=40°,求∠COF的度数.24.(10分)化简求值(1)求的值,其中,;(2)求的值,其中.25.(12分)已知:如图,在△ABC中,AD平分∠BAC,CE⊥AD于点E,EF∥AB交AC于点F.求证:△FEC是等腰三角形.26.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据三角形的三边关系和a的取值范围逐一判断即可.【详解】解:A.(a+3)+(a+4)=2a+7,不能构成三角形,故本选项不符合题意;B.5a²+6a²>10a²,能构成三角形,故本选项符合题意;C.3a+a=4a,不能构成三角形,故本选项不符合题意;D.(a-1)+(a-2)=2a-3<2a-3+a=3a-3,不能构成三角形,故本选项不符合题意.故选B.【点睛】此题考查的是判断三条线段是否能构成三角形,掌握三角形的三边关系是解决此题的关键.2、D【分析】由关系式(a-b)2=(a+b)2-4ab可求出a-b的值【详解】∵a+b=6,ab=7,(a-b)2=(a+b)2-4ab∴(a-b)2=8,∴a-b=.故选:D.【点睛】考查了完全平方公式,解题关键是能灵活运用完全平方公式进行变形.3、A【分析】利用对顶角的性质、平行线的性质及判定及三角形的内角和等知识分别判断后即可确定答案.【详解】A、相等的两个角不一定是对顶角,故错误,是假命题;B、两直线平行,同位角相等,正确,是真命题;C、同位角相等,两直线平行,正确,是真命题;D、三角形三个内角和等于180°,正确,是真命题;故选:A.【点睛】此题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及判定及三角形的内角和,难度不大.4、C【分析】根据直线平移的规律得到平移前的直线解析式,再根据一次函数的性质依次判断选项即可得到答案.【详解】∵直线沿着轴向下平移2个单位长度后得到直线,∴原直线解析式为:+2=x+1,∴函数图象经过第一、二、三象限,故A错误,当y=0时,解得x=-1,图象与x轴交点坐标为(-1,0),故B错误;当x=0时,得y=1,图象与y轴交点坐标为(0,1),故C正确;∵k=1>0,∴y随x的增大而增大,故D错误,故选:C.【点睛】此题考查一次函数的性质,函数图象平移的规律,根据图象的平移规律得到函数的解析式是解题的关键.5、D【详解】解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x,即20﹣3x=2x,解得x=1.故选D.【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.6、C【分析】根据勾股定理即可求出AB,然后根据角平分线的性质和定义DC=DE,∠CAD=∠EAD,利用直角三角形的性质即可求出∠ADC=∠ADE,再根据角平分线的性质可得AE=AC,从而求出BE,即可求出的周长.【详解】解:∵在中,,,∴AB=∵是的平分线,∴DC=DE,∠CAD=∠EAD,∠DEA=90°∴∠ADC=90°-∠CAD=90°-∠EAD=∠ADE即DA平分∠CDE∴AE=AC=10cm∴BE=AB-AE=∴的周长=DE+DB+BE=DC+DB+BE=BC+BE=10+故选C.【点睛】此题考查的是勾股定理、角平分线的性质和直角三角形的性质,掌握用勾股定理解直角三角形、角平分线的性质和直角三角形的两个锐角互余是解决此题的关键.7、D【分析】根据7000元超过3500元,所以应纳税部分是7000-3500=3500元,3500元分成2部分,第一部分1500元,按照3%纳税,剩下的3500-1500=2000元,按照10%纳税,分别根据应纳税额=收入×税率,求出两部分的应纳税额,即可得出税后工资薪金.【详解】解:税后工资薪金为:7000-1500×3%-(7000-3500-1500)×10%=6755(元),
故选:D.【点睛】此题主要考查了列代数式,特别要注意求出按什么税率缴税,分段计算即可解决问题.8、D【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:,故选D.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.9、B【分析】根据分式的基本性质和运算法则分别计算即可判断.【详解】A.=,故此选项错误;B.原式=,故此选项g正确;C.原式=,故此选项错误;D.原式=,故此选项错误.故答案选B.【点睛】本题主要考查分式的混合运算,熟练掌握分式的运算顺序和运算法则是解题的关键.10、C【分析】直接利用关于x轴对称点的性质得出a,b的值,进而根据a,b的符号判断在第几象限.【详解】解:∵点与点关于轴对称,∴∴点在第三象限,故答案选C.【点睛】本题主要考查关于x轴对称点的坐标的特点,关键是掌握点的坐标的变化规律.11、C【分析】根据各象限内点的坐标特征进一步解答即可.【详解】由题意得:点A的横坐标与纵坐标皆为负数,∴点A在第三象限,故选:C.【点睛】本题主要考查了直角坐标系中点的坐标特征,熟练掌握相关概念是解题关键.12、A【分析】由题意根据轴对称图形的概念进行分析判断即可.【详解】解:A.不是轴对称图形,故此选项符合题意;B.是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项不合题意.故选:A.【点睛】本题考查轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题(每题4分,共24分)13、(a+1)1.【分析】原式提取公因式,计算即可得到结果.【详解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
=…,
=(a+1)1.
故答案是:(a+1)1.【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.14、【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:.15、【分析】由平行线的性质得出∠B=∠E,由ASA即可得出△ABC≌△DEF.【详解】解:添加条件:,理由如下:∵BC∥EF,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);故答案为:【点睛】本题主要考查利用ASA判定三角形全等,找到另外一组相等角是解题的关键.16、【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得4※8=故答案为:.【点睛】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.17、【分析】根据整式的除法法则计算可得解.【详解】故答案是:.18、-1【解析】根据立方根的定义进行求解即可得.【详解】∵(﹣1)3=﹣8,∴﹣8的立方根是﹣1,故答案为﹣1.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.三、解答题(共78分)19、(1)(2m+n)(m+2n);(2)1;(3)2【分析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10平方厘米,得出等式求出m+n,(3)根据m+n的值,进一步得到图中所有裁剪线(虚线部分)长之和即可.【详解】解:(1)由图形可知,2m2+5mn+2n2=(2m+n)(m+2n),故答案为(2m+n)(m+2n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∴(m+n)2=m2+n2+2mn=29+20=49,∴m+n=1,故答案为1.(3)图中所有裁剪线段之和为1×6=2(cm).故答案为2.【点睛】本题考查了因式分解的应用,正确用两种方法表示图形面积是解题的关键.20、(1)条形统计图中D类型的人数错误;2人;(2)众数为5,中位数为5;(3)1378棵.【分析】(1)利用总人数20乘以对应的百分比即可求得D类的人数解答;
(2)根据众数、中位数的定义即可直接求解;
(3)首先求得调查的20人的平均数,乘以总人数260即可.【详解】(1)条形统计图中D类型的人数错误,D类的人数是:20×10%=2(人).(2)由统计图可知:B类型的人数最多,且为8人,所以众数为5,由条形统计图可知中位数为B类型对应的5;(3)(棵).估计260名学生共植树5.3×260=1378(棵).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)y=2x+5;(2)y=2x+1.【分析】(1)利用平行线性质可知k值相等,进而将P点坐标代入即可求出直线的表达式;(2)由题意设直线AB的表达式为:y=kx+b,求出直线AB的表达式,再根据题意设AB边上的高CD所在直线的直线表达式为y=mx+n,进行分析求出CD所在直线的表达式.【详解】(1)∵∥∴,∵直线经过点P(-2,1)∴=2×(-2)+,=5,∴直线的表达式为:y=2x+5.(2)设直线AB的表达式为:y=kx+b∵直线经过∴,解得,∴直线AB的表达式为:;设AB边上的高所在直线的表达式为:y=mx+n,∵CD⊥AB,∴,∵直线CD经过点C(-1,-1),∴∴边上的高所在直线的表达式为:y=2x+1.【点睛】此题考查一次函数的性质,理解题意并利用待定系数法求一次函数解析式的解题关键.22、(1)证明见解析;(2)见解析.【分析】(1)先根据方式一:①②的面积等于两个正方形的面积之差;方式二:①②的面积等于两个直角梯形的面积之和;然后根据方式一和方式二计算的面积相等即可验证平方差公式;(2)如图(见解析),先根据方式一:①②③④的面积等于两个正方形的面积之差;方式二:①②③④的面积等于四个长方形的面积之和,然后根据方式一和方式二计算的面积相等即可验证平方差公式.【详解】(1)方式一:①②的面积等于两个正方形的面积之差则①②的面积为方式二:①②的面积等于两个直角梯形的面积之和则①②的面积为由方式一和方式二的面积相等可得:;(2)如图,方式一:①②③④的面积等于两个正方形的面积之差则①②③④的面积为方式二:①②③④的面积等于四个长方形的面积之和①②的面积为③④的面积为则①②③④的面积为由方式一和方式二的面积相等可得:.【点睛】本题考查了利用特殊四边形的面积验证平方差公式,掌握理解平方差公式是解题关键.23、110°【分析】通过对顶角性质得到∠BOD度数,再通过角平分线定义得到∠DOE的度数,通过垂直定义得到∠EOF的度数,再通过角的和差得到∠2的度数,最后通过邻补角性质即可得到∠COF的度数.【详解】解:∵∠BOD与∠AOC是对顶角,且∠AOC=40°,∴∠BOD=∠AOC=40°,∵OE平分∠BOD,∴∠1=∠2=∠BOD=×40°=20°,∵OE⊥OF,∴∠EOF=90°,∴∠2=∠EOF-∠1=90°-20°=70°,∴∠COF=∠COD-∠2=180°-70°=110°.【点睛】本题考查垂直定义、角平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 散客旅游服务合同范本
- 学校宿舍改造维修施工合同范本
- 水上安全培训合同范本
- 作业试卷分析
- 幼儿园教师的教研工作总结范文(29篇)
- 照明安装协议
- 加工定做印刷合同标准文本
- 办公场所转租合同样本
- 纠错教学模式在高中英语写作教学中的实验研究
- 修理厂分项承包合同样本
- 焊材发放与回收及焊条烘干记录记录表
- 前言 马克思主义中国化时代化的历史进程与理论成果
- 酒精依赖症研究白皮书
- 服装高级定制技术
- 幼儿园中班语言《春雨的吉他》PPT
- 21ZJ111 变形缝建筑构造
- 第1章 健康风险与健康保险《健康保险学》教学课件
- 天然气管道置换记录表
- 学前幼儿园-《守卫国家安全的人》教学课件设计
- 客户互动知识培训讲座
- 高中生物奥赛辅导资料
评论
0/150
提交评论