四川省华蓥一中2024届高一上数学期末监测试题含解析_第1页
四川省华蓥一中2024届高一上数学期末监测试题含解析_第2页
四川省华蓥一中2024届高一上数学期末监测试题含解析_第3页
四川省华蓥一中2024届高一上数学期末监测试题含解析_第4页
四川省华蓥一中2024届高一上数学期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省华蓥一中2024届高一上数学期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设函数的定义域,函数的定义域为,则=A. B.C. D.2.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是()A. B.C. D.3.把11化为二进制数为A. B.C. D.4.已知直线,直线,则与之间的距离为()A. B.C. D.5.在北京召开的国际数学家大会的会标如图所示,它是由个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为,大正方形的面积是,小正方形的面积是,则A. B.C. D.6.如图是三个对数函数的图象,则a、b、c的大小关系是()A.a>b>c B.c>b>aC.c>a>b D.a>c>b7.已知定义域为的函数满足:,且,当时,,则等于A. B.C.2 D.48.已知奇函数fx在R上是增函数,若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b9.若xlog34=1,则4x+4–x=A.1 B.2C. D.10.函数的图像向左平移个单位长度后是奇函数,则在上的最小值是()A. B.C. D.11.下列函数中,既是偶函数又在单调递增的函数是()A. B.C. D.12.如图所示,观察四个几何体,其中判断错误的是()A.不是棱台 B.不是圆台C.不是棱锥 D.是棱柱二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.要制作一个容器为4,高为无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)14.函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于原点对称,则的值为__________15.在平面直角坐标系中,已知点A在单位圆上且位于第三象限,点A的纵坐标为,现将点A沿单位圆逆时针运动到点B,所经过的弧长为,则点B的坐标为___________.16.记函数的值域为,在区间上随机取一个数,则的概率等于__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,角的终边与单位圆交于点,且.(1)求;(2)求.18.已知函数.(1)若在上是减函数,求的取值范围;(2)设,,若函数有且只有一个零点,求实数的取值范围.19.设(1)分别求(2)若,求实数的取值范围20.如图,直三棱柱ABC﹣A1B1C1中,M,N分别为棱AC和A1B1的中点,且AB=BC(1)求证:平面BMN⊥平面ACC1A1;(2)求证:MN∥平面BCC1B121.已知是上的奇函数,且(1)求的解析式;(2)判断的单调性,并根据定义证明22.已知函数,(1)求函数的最小正周期;(2)求函数的对称中心;(3)当时,求的最大值和最小值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由题意知,,所以,故选B.点睛:集合是高考中必考知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错2、C【解析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果.【详解】因为方程存在两个不同的实数根,所以,,解得或,设,对称轴为,当时,因为两个不同实数根在区间上,所以,即,解得,当时,因为两个不同的实数根在区间上,所以,即,解得,综上所述,实数的取值范围是,故选:C.3、A【解析】11÷2=5…15÷2=2…12÷2=1…01÷2=0…1故11(10)=1011(2)故选A.4、D【解析】利用两平行线间的距离公式即可求解.【详解】直线的方程可化为,则与之间的距离故选:D5、C【解析】根据题意即可算出每个直角三角形面积,再根据勾股定理和面积关系即可算出三角形的两条直角边.从而算出【详解】由题意得直角三角形的面积,设三角形的边长分别为,则有,所以,所以,选C.【点睛】本题主要考查了三角形的面积公式以及直角三角形中,正弦、余弦的计算,属于基础题6、D【解析】根据对数函数的图象与单调性确定大小【详解】y=logax的图象在(0,+∞)上是上升的,所以底数a>1,函数y=logbx,y=logcx的图象在(0,+∞)上都是下降的,因此b,c∈(0,1),又易知c>b,故a>c>b.故选:D7、D【解析】由得,又由得函数为偶函数,所以选D8、C【解析】由题意:a=f-且:log2据此:log2结合函数的单调性有:flog即a>b>c,c<b<a.本题选择C选项.【考点】指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.9、D【解析】条件可化为x=log43,运用对数恒等式,即可【详解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故选D【点睛】本题考查对数性质的简单应用,属于基础题目10、D【解析】由函数图像平移后得到的是奇函数得,再利用三角函数的图像和性质求在上的最小值.【详解】平移后得到函数∵函数为奇函数,故∵,∴,∴函数为,∴,时,函数取得最小值为故选【点睛】本题主要考查三角函数图像的变换,考查三角函数的奇偶性和在区间上的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.11、B【解析】由奇偶性排除,再由增减性可选出正确答案.【详解】项为奇函数,项为非奇非偶函数函数,为偶函数,项中,在单减,项中,在单调递增.故选:B12、C【解析】利用几何体的定义解题.【详解】A.根据棱台的定义可知几何体不是棱台,所以A是正确的;B.根据圆台的定义可知几何体不是圆台,所以B是正确的;C.根据棱锥的定义可知几何体是棱锥,所以C是错误的;D.根据棱柱的定义可知几何体是棱柱,所以D是正确的.故答案为C【点睛】本题主要考查棱锥、棱柱、圆台、棱台的定义,意在考查学生对这些知识的掌握水平和分析推理能力.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、160【解析】设底面长方形的长宽分别为和,先求侧面积,进一步求出总的造价,利用基本不等式求出最小值.【详解】设底面长方形的长宽分别为和,则,所以总造价当且仅当的时区到最小值则该容器的最低总造价是160.故答案为:160.14、【解析】由题意知,先明确值,该函数平移后为奇函数,根据奇函数性质得图象过原点,由此即可求得值【详解】∵函数的最小正周期为,∴,即,将的图象向左平移个单位长度,所得函数为,又所得图象关于原点对称,∴,即,又,∴故答案为:【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,考查奇偶函数的性质,要熟练掌握图象变换的方法15、【解析】设点A是角终边与单位圆的交点,根据三角函数的定义及平方关系求出,,再利用诱导公式求出,即可得出答案.【详解】解:设点A是角的终边与单位圆的交点,因为点A在单位圆上且位于第三象限,点A的纵坐标为,所以,,因为点A沿单位圆逆时针运动到点B,所经过的弧长为,所以,所以点的横坐标为,纵坐标为,即点B的坐标为.故答案为:.16、【解析】因为;所以的概率等于点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)【解析】(1)根据三角函数的定义,平方关系以及点的位置可求出,再由商数关系即可求出;(2)利用诱导公式即可求出【小问1详解】由三角函数定义知,所以,因,所以,所以.【小问2详解】原式.18、(1)(2)【解析】(1)由题意结合函数单调性的定义得到关于a的表达式,结合指数函数的性质确定的取值范围即可;(2)利用换元法将原问题转化为二次方程根的分布问题,然后求解实数的取值范围即可.【详解】(1)由题设,若在上是减函数,则任取,,且,都有,即成立.∵.又在上是增函数,且,∴由,得,即,且.∴只须,解.由,,且,知,∴,即,∴.所以在上是减函数,实数的取值范围是.(2)由题知方程有且只有一个实数根,令,则关于的方程有且只有一个正根.若,则,不符合题意,舍去;若,则方程两根异号或有两个相等的正根.方程两根异号等价于解得;方程有两个相等的正根等价于解得;综上所述,实数的取值范围为.【点睛】本题主要考查函数的单调性,二次方程根的分布等知识,意在考查学生的转化能力和计算求解能力.19、(1);或(2)【解析】(1)解不等式,直接计算集合的交集并集与补集;(2)根据集合间的计算结果判断集合间关系,进而确定参数取值范围.【小问1详解】解:解不等式可得,,所以,或,或;【小问2详解】解:由可得,且,所以,解得,即.20、(1)见解析;(2)见解析【解析】(1)由面面垂直的性质定理证明平面,再由面面垂直的判定定理得证面面垂直;(2)取BC中点P,连接B1P和MP,可证MN∥PB1,从而可证线面平行【详解】(1)因为M为棱AC的中点,且AB=BC,所以BM⊥AC,又因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥平面ABC因为BM⊂平面ABC,所以AA1⊥BM又因为AC,A1A⊂平面ACC1A1且AC∩A1A=A,所以BM⊥平面ACC1A1因为BM⊂平面BMN,所以:平面BMN⊥平面ACC1A1(2)取BC的中点P,连接B1P和MP,因为M、P为棱AC、BC的中点,所以MP∥AB,且MPAB,因为ABC﹣A1B1C1是直三棱柱,所以A1B1∥AB,A1B1=AB因为N为棱A1B1的中点,所以B1N∥BA,且B1NBA;所以B1N∥PM,且B1N=PM;所以MNB1P是平行四边形,所以MN∥PB1又因为MN⊄平面BCC,PB1⊂平面BCC1B1所以MN∥平面BCC1B1【点睛】本题考查证明面面垂直与线面平行,掌握它们的判定定理是解题关键.立体几何证明中,要由定理得出结论,必须满足定理的所有条件,缺一不可.有些不明显的结论需要证明,明显的结论也要列举出来,否则证明过程不完整21、(1)(2)见解析【解析】(1)由可得解;(2)利用单调性的定义证明即可.【小问1详解】已知是上的奇函数,且,所以,解得,所以,小问2详解】根据指数函数的单调性可判断得为增函数.下证明:设是上任意给定的两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论