四川省苍溪中学2023-2024学年高一数学第一学期期末学业水平测试试题含解析_第1页
四川省苍溪中学2023-2024学年高一数学第一学期期末学业水平测试试题含解析_第2页
四川省苍溪中学2023-2024学年高一数学第一学期期末学业水平测试试题含解析_第3页
四川省苍溪中学2023-2024学年高一数学第一学期期末学业水平测试试题含解析_第4页
四川省苍溪中学2023-2024学年高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省苍溪中学2023-2024学年高一数学第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.每天,随着清晨第一缕阳光升起,北京天安门广场都会举行庄严肃穆的升旗仪式,每天升国旗的时间随着日出时间的改变而改变,下表给出了2020年1月至12月,每个月第一天北京天安门广场举行升旗礼的时间:1月2月3月4月5月6月7月8月9月10月11月12月7:367:236:485:595:154:484:495:125:416:106:427:16若据此以月份(x)为横轴、时间(y)为纵轴,画出散点图,并用曲线去拟合这些数据,则适合模拟的函数模型是()A. B.且a≠1)C. D.且a≠1)2.已知指数函数在上单调递增,则实数的值为()A. B.1C. D.23.函数f(x)=|x|+(aR)的图象不可能是()A. B.C. D.4.已知函数恰有2个零点,则实数a取值范围是()A. B.C. D.5.如图,在矩形中,是两条对角线的交点,则A. B.C. D.6.已知指数函数在上单调递增,则的值为()A.3 B.2C. D.7.已知向量,向量,则的最大值,最小值分别是()A.,0 B.4,C.16,0 D.4,08.已知函数,现有下列四个结论:①对于任意实数a,的图象为轴对称图形;②对于任意实数a,在上单调递增;③当时,恒成立;④存在实数a,使得关于x的不等式的解集为其中所有正确结论的序号是()A.①② B.③④C.②③④ D.①②④9.已知函数的值域为,则实数a的取值范围是()A. B.C. D.10.“角小于”是“角是第一象限角”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.设函数的定义域为D,若存在实数,使得对于任意,都有,则称为“T—单调增函数”对于“T—单调增函数”,有以下四个结论:①“T—单调增函数”一定在D上单调递增;②“T—单调增函数”一定是“—单调增函数”(其中,且):③函数是“T—单调增函数”(其中表示不大于x的最大整数);④函数不“T—单调增函数”其中,所有正确的结论序号是______12.已知,则___________13.已知向量不共线,,若,则___14.在中,,则等于______15.圆关于直线的对称圆的标准方程为___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.若函数自变量的取值区间为时,函数值的取值区间恰为,就称区间为的一个“罗尔区间”.已知函数是定义在上的奇函数,当时,.(1)求的解析式;(2)求函数在内的“罗尔区间”;(3)若以函数在定义域所有“罗尔区间”上的图像作为函数的图像,是否存在实数,使集合恰含有2个元素.若存在,求出实数的取值集合;若不存在,说明理由.17.已知全集,,.(1)当时,,;(2)若,求实数a的取值范围,18.已知函数,.(1)求函数的值域;(2)若存在实数,使得在上有解,求实数的取值范围.19.已知函数是偶函数,且,.(1)当时,求函数的值域;(2)设,,求函数的最小值;(3)设,对于(2)中的,是否存在实数,使得函数在时有且只有一个零点?若存在,求出实数的取值范围;若不存在,请说明理由.20.已知函数(1)求的最小正周期;(2)当时,求的最小值以及取得最小值时的集合21.如图,正方体中,点,分别为棱,的中点.(1)证明:平面;(2)证明:平面.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】画出散点图,根据图形即可判断.【详解】画出散点图如下,则根据散点图可知,可用正弦型曲线拟合这些数据,故适合.故选:C.2、D【解析】解方程即得或,再检验即得解.【详解】解:由题得或.当时,上单调递增,符合题意;当时,在上单调递减,不符合题意.所以.故选:D3、C【解析】对分类讨论,将函数写成分段形式,利用对勾函数的单调性,逐一进行判断图象即可.【详解】,①当时,,图象如A选项;②当时,时,,在递减,在递增;时,,由,单调递减,所以在上单调递减,故图象为B;③当时,时,,可得,,在递增,即在递增,图象为D;故选:C.4、D【解析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围.【详解】函数在区间上单调递减,且方程的两根为.若时,由解得或,满足题意.若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且.当时,,,此时函数有两个零点,满足题意.综上,故选:D5、B【解析】利用向量加减法的三角形法则即可求解.【详解】原式=,答案为B.【点睛】主要考查向量的加减法运算,属于基础题.6、B【解析】令系数为,解出的值,又函数在上单调递增,可得答案【详解】解得,又函数在上单调递增,则,故选:B7、D【解析】利用向量的坐标运算得到|2用θ的三角函数表示化简求最值【详解】解:向量,向量,则2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分别是:16,0;所以|2的最大值,最小值分别是4,0;故选:D【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性8、D【解析】根据函数的解析式,可知其关于直线,可判断①正确;是由与相加而成,故该函数为单调函数,由此可判断②;根据的函数值情况可判断③;看时情况,结合函数的单调性,可判断④的正误.【详解】对①,因为函数与|的图象都关于直线对称,所以的图象关于直线对称,①正确对②,当时,函数与都单调递增,所以也单调递增,②正确对③,当时,,③错误对④,因为图象关于直线对称,在上单调递减,在上单调递增,且,所以存在,使得的解集为,④正确故选:D9、B【解析】令,要使已知函数的值域为,需值域包含,对系数分类讨论,结合二次函数图像,即可求解.【详解】解:∵函数的值域为,令,当时,,不合题意;当时,,此时,满足题意;当时,要使函数的值域为,则函数的值域包含,,解得,综上,实数的取值范围是.故选:B【点睛】关键点点睛:要使函数的值域为,需要作为真数的函数值域必须包含,对系数分类讨论,结合二次函数图像,即可求解.10、D【解析】利用特殊值法结合充分、必要条件的定义判断可得出结论.【详解】若角小于,取,此时,角不是第一象限角,即“角小于”“角是第一象限角”;若角是第一象限角,取,此时,,即“角小于”“角是第一象限角”.因此,“角小于”是“角是第一象限角”的既不充分也不必要条件.故选:D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、②③④【解析】①③④选项可以举出反例;②可以进行证明.【详解】①例如,定义域为,存在,对于任意,都有,但在上不单调递增,①错误;②因为是单调增函数,所以存在,使得对于任意,都有,因为,,所以,故,即存在实数,使得对于任意,都有,故是单调增函数,②正确;③,定义域为,当时,对任意的,都有,即成立,所以是单调增函数,③正确;④当时,,若,则,显然不满足,故不是单调增函数,④正确.故答案为:②③④12、2【解析】将齐次式弦化切即可求解.【详解】解:因为,所以,故答案为:2.13、【解析】由,将表示为的数乘,求出参数【详解】因为向量不共线,,且,所以,即,解得【点睛】向量与共线,当且仅当有唯一一个实数,使得14、【解析】由题;,又,代入得:考点:三角函数的公式变形能力及求值.15、【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【点睛】本题考查圆关于直线对称的圆,属于基础题三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2);(3)存在,.【解析】(1)根据为上的奇函数,得到,再由时,,设时,则代入求解.(2)设,易知在上单调递减,则,则,是方程的两个不等正根求解(3)设为的一个“罗尔区间”,且,同号,若,由(2)可得,若,同理可求,得到,再根据集合恰含有2个元素,转化为与的图象有两个交点,即方程在内恰有一个实数根,方程,在内恰有一个实数根求解..【详解】(1)因为为上的奇函数,∴,又当时,,所以当时,,所以,所以.(2)设,∵在上单调递减,∴,即,是方程的两个不等正根,∵,∴,∴在内的“罗尔区间”为.(3)设为的一个“罗尔区间”,则,∴,同号.当时,同理可求在内的“罗尔区间”为,∴,依题意,抛物线与函数的图象有两个交点时,一个交点在第一象限,一个交点在第三象限,所以应当使方程在内恰有一个实数根,且使方程,在内恰有一个实数根,由方程,即在内恰有一根,令,则,解得;由方程,即在内恰有一根,令,则,解得.综上可知,实数的取值集合为.【点睛】关键点点睛:本题关键是对“罗尔区间”的理解,特别是根据在上单调递减,得到,转化为,是方程的两个不等正根求解17、(1),或;(2)【解析】(1)解不等式,求出,进而求出与;(2)利用交集结果得到集合包含关系,进而求出实数a的取值范围.【小问1详解】,解得:,所以,当时,,所以,或;【小问2详解】因为,所以,要满足,所以实数a的取值范围是18、(1)(2)【解析】(1)结合题意得Mx=log2x,0<x<2(2)由题知,进而换元得在上有解,再根据对勾函数求最值即可;【小问1详解】解:函数,因为,所以当时,,.当时,,.即Mx当时,;当时,.综上:值域为.【小问2详解】解:可以化为即:令,,所以,所以所以在上有解即在上有解令,则而当且仅当,即时取等号所以实数的取值范围是19、(1)(2)(3)存在,【解析】(1)由条件求出,由此求出,利用单调性求其在时的值域;(2)利用换元法,考虑轴与区间的位置关系求,(3)令,由已知可得函数,,在上有且仅有一个交点,由此列不等式求的取值范围.【小问1详解】因为函数是偶函数,故而,可得,则,故易知在上单调递增,故,;故【小问2详解】令,故;则,对称轴为①当时,在上单增,故;②当时,在上单减,在上单增,故;③当时,在上单减,故;故函数的最小值【小问3详解】由(2)知当时,;则,即令,,问题等价于两个函数与的图象在上有且只有一个交点;由,函数的图象开口向下,对称轴为,在上单调递减,在上单调递增,可图知;故【点睛】函数的零点个数与函数和的图象的交点个数相等,故可通过函数图象研究形如函数的零点问题.20、(1),(2),时【解析】(1)先利用同角平方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论