版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市成外2023-2024学年高一数学第一学期期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A. B.C. D.2.下列函数中,既是偶函数,又在区间上是增函数的是()A. B.C. D.3.设函数,则下列结论错误的是A.函数的值域为 B.函数是奇函数C.是偶函数 D.在定义域上是单调函数4.直线L将圆平分,且与直线平行,则直线L的方程是A.BC.D.5.已知,则()A. B.C. D.6.已知H是球的直径AB上一点,AH:HB=1:2,AB⊥平面,H为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.7.已知全集,集合,那么()A. B.C. D.8.若,,则sin=A. B.C. D.9.A. B.C. D.10.已知定义域为R的函数在单调递增,且为偶函数,若,则不等式的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在三棱锥中,,,两两垂直,,,三棱锥的侧面积为13,则该三棱锥外接球的表面积为______.12.函数的定义域是______________13.函数f(x)为奇函数,且x>0时,f(x)=+1,则当x<0时,f(x)=________.14.若sinθ=,求的值_______15.函数的最小正周期为,且.当时,则函数的对称中心__________;若,则值为__________.16.已知函数的定义域为R,,且函数为偶函数,则的值为________,函数是________函数(从“奇”、“偶”、“非奇非偶”、“既奇又偶”中选填一个).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数是定义在实数集上的奇函数,并且在区间上是单调递增的函数.(1)研究并证明函数在区间上的单调性;(2)若实数满足不等式,求实数的取值范围.18.已知圆,直线.(1)若直线与圆交于不同的两点,当时,求的值.(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.19.设A是实数集的非空子集,称集合且为集合A的生成集(1)当时,写出集合A的生成集B;(2)若A是由5个正实数构成的集合,求其生成集B中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A,使其生成集,并说明理由20.已知函数.(1)判断函数的奇偶性,并证明;(2)设函数,若对任意的,总存在使得成立,求实数m的取值范围.21.(1)已知,,求;(2)已知,,求、的值;(3)已知,,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题意,的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为,向左平移一个单位为,向下平移一个单位为,利用特殊点变为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.2、B【解析】先判断定义域是否关于原点对称,再将代入判断奇偶性,进而根据函数的性质判断单调性即可【详解】对于选项A,定义域为,,故是奇函数,故A不符合条件;对于选项B,定义域为,,故是偶函数,当时,,由指数函数的性质可知,在上是增函数,故B正确;对于选项C,定义域为,,故是偶函数,当时,,由对数函数的性质可知,在上是增函数,则在上是减函数,故C不符合条件;对于选项D,定义域为,,故是奇函数,故D不符合条件,故选:B【点睛】本题考查判断函数的奇偶性和单调性,熟练掌握函数的性质是解题关键3、D【解析】根据分段函数的解析式研究函数的单调性,奇偶性,值域,可得结果.【详解】当时,为增函数,所以,当时,为增函数,所以,所以的值域为,所以选项是正确的;又,,所以在定义域上不是单调函数,故选项是错误的;因为当时,,所以,当时,,所以,所以在定义域内恒成立,所以为奇函数,故选项是正确的;因为恒成立,所以函数为偶函数,故选项是正确的.故选:D【点睛】本题考查了分段函数的单调性性,奇偶性和值域,属于基础题.4、C【解析】圆的圆心坐标,直线L将圆平分,所以直线L过圆的圆心,又因为与直线平行,所以可设直线L的方程为,将代入可得所以直线L的方程为即,所以选C考点:求直线方程5、C【解析】因为,所以;因为,,所以,所以.选C6、D【解析】设球的半径为,根据题意知由与球心距离为的平面截球所得的截面圆的面积是,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积【详解】设球的半径为,∵,∴平面与球心的距离为,∵截球所得截面的面积为,∴时,,故由得,∴,∴球的表面积,故选D【点睛】本题主要考查的知识点是球的表面积公式,若球的截面圆半径为,球心距为,球半径为,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,属于中档题.7、C【解析】应用集合的补运算求即可.【详解】∵,,∴.故选:C8、B【解析】因为,,所以sin==,故选B考点:本题主要考查三角函数倍半公式的应用点评:简单题,注意角的范围9、A【解析】,选A.10、D【解析】根据题意,由函数为偶函数分析可得函数的图象关于直线对称,结合函数的单调性以及特殊值分析可得,解可得的取值范围,即可得答案【详解】解:根据题意,函数为偶函数,则函数的图象关于直线对称,又由函数在,单调递增且f(3),则,解可得:,即不等式的解集为;故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据侧面积计算得到,再计算半径为,代入表面积公式得到答案.【详解】三棱锥的侧面积为,所以故该三棱锥外接球的半径为:,球的表面积为.故答案为:【点睛】本题考查了三棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.12、【解析】由题意可得,从而可得答案.【详解】函数的定义域满足即,所以函数的定义域为故答案为:13、【解析】当x<0时,-x>0,∴f(-x)=+1,又f(-x)=-f(x),∴f(x)=,故填.14、6【解析】先通过诱导公式对原式进行化简,然后通分,进而通过同角三角函数的平方关系将原式转化为只含的式子,最后得到答案.【详解】原式=+,因为,所以.所以.故答案为:6.15、①.②.【解析】根据最小正周期以及关于的方程求解出的值,根据对称中心的公式求解出在上的对称中心;先求解出的值,然后根据角的配凑结合两角差的正弦公式求解出的值.【详解】因为最小正周期为,所以,又因为,所以,所以或,又因为,所以,所以,所以,令,所以,又因为,所以,所以对称中心为;因为,,所以,若,则,不符合,所以,所以,所以,故答案为:;.16、①.7②.奇【解析】利用函数的奇偶性以及奇偶性定义即可求解.【详解】函数为偶函数,由,则,所以,所以,,定义域为,定义域关于原点对称.因为,所以,所以函数为奇函数.故答案为:7;奇三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)设,则,所以,根据在区间上是单调递增,可得,从而可得函数在区间上是单调递减函数;(2)先证明在区间上是单调递增的函数,根据奇偶性可得在区间上是单调递增的函数,再将变形为,可得,进而可得实数的取值范围.试题解析:(1)设,显然恒成立.设,则,,,则,所以,又在区间上是单调递增,所以,即,所以函数在区间上是单调递减函数.(2)因为是定义在实数集上的奇函数,所以,又因为在区间上是单调递增的函数,所以当时,,当时,,,所以当,有.设,则,所以,即,所以,所以在区间上是单调递增函数.综上所述,在区间上是单调递增的函数.所以由得,即所以.【方法点睛】本题主要考查函数的奇偶性的应用以及抽象函数与复合函数的单调性,属于难题.利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取;(2)作差;(3)判断的符号(往往先分解因式,再判断各因式的符号),可得在已知区间上是增函数,可得在已知区间上是减函数.18、(1);(2)直线过定点;(3)【解析】(1)利用点到直线的距离公式,结合点到的距离,可求的值;(2)由题意可知:、、、四点共圆且在以为直径的圆上,、在圆上可得直线,的方程,即可求得直线是否过定点;(3)设圆心到直线、的距离分别为,.则,表示出四边形的面积,利用基本不等式,可求四边形的面积最大值【详解】解:(1),点到的距离,(2)由题意可知:、、、四点共圆且在以为直径的圆上,设,其方程为:,即,又、在圆上,即由,得,直线过定点)(3)设圆心到直线、的距离分别为,则,当且仅当即时,取“”四边形的面积的最大值为19、(1)(2)7(3)不存在,理由见解析【解析】(1)利用集合的生成集定义直接求解.(2)设,且,利用生成集的定义即可求解;(3)不存在,理由反证法说明.【小问1详解】,【小问2详解】设,不妨设,因为,所以中元素个数大于等于7个,又,,此时中元素个数大于等于7个,所以生成集B中元素个数的最小值为7.【小问3详解】不存在,理由如下:假设存在4个正实数构成的集合,使其生成集,不妨设,则集合A的生成集则必有,其4个正实数的乘积;也有,其4个正实数乘积,矛盾;所以假设不成立,故不存在4个正实数构成的集合A,使其生成集【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A的生成集的定义,考查学生的分析解题能力,属于较难题.20、(1)偶函数,证明见解析(2)【解析】(1)为偶函数,利用偶函数定义证明即可;(2)转化为,利用均值不等式可求解的最大值,利用一次函数性质求解的最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东司法警官职业学院《Thermo-fluids》2023-2024学年第一学期期末试卷
- 广东石油化工学院《艺术教育概览》2023-2024学年第一学期期末试卷
- 广东生态工程职业学院《统计软件操作》2023-2024学年第一学期期末试卷
- 广东青年职业学院《营销业务实训》2023-2024学年第一学期期末试卷
- 广东梅州职业技术学院《机器人教育》2023-2024学年第一学期期末试卷
- 一年级数学计算题专项练习汇编
- 防震减灾工作总结5篇
- 电气工程师工作总结
- 【名师金典】2022新课标高考生物总复习限时检测21染色体变异和人类遗传病-
- 【名师一号】2020-2021学年苏教版化学检测题-选修四:《专题2-化学反应速率与化学平衡》
- 手动及手持电动工具培训考核试卷
- 2024年湖北省公务员录用考试《行测》真题及答案解析
- 自然辩证法习题及答案
- 特色农产品超市方案
- 2024国有企业与民营企业之间的混合所有制改革合同
- 物流仓库安全生产
- 2024年医院食堂餐饮独家承包协议
- 保险公司廉政风险防控制度
- DB34T4868-2024智慧医院医用耗材院内物流规范
- 2025年蛇年年会汇报年终总结大会模板
- 《稻草人》阅读题及答案
评论
0/150
提交评论